Comptes Rendus
Mécanotransduction du remodelage osseux : rôle des fissures à la périphérie des ostéons
[Mechanotransduction of bone remodelling: role of micro-cracks at the periphery of osteons]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 4, pp. 354-362.

Cortical bone is a kind of hard tissue found at the edges of long bones. Its unit structural elements are the cylindrical osteons. During daily activities, they are subjected to an important mechanical load. Bone remodelling is suspected to be initiated by different stimuli including micro-cracks and interstitial fluid movement. Stimulation of the mechano-sensitive cells (osteocytes) resulting from micro-cracks presence on the external wall (cement surface) of the osteon is studied. To this end, poroelasticity is used to describe cortical tissue behaviour. Finally, osteocytes network excitation because of surface micro-cracks presence is explained thanks to a finite element study.

L'os cortical est un type de tissu dense situé à la périphérie des os longs. Sa structure unitaire, de forme cylindrique, est appelée ostéon. Lors des activités quotidiennes, telles que la marche ou le maintien de posture, il est soumis à un chargement mécanique important. Différents stimuli, tels les mouvements de fluide interstitiel ou les microfissures, sont suspectés d'initier le remodelage osseux. Dans cette étude, nous montrons comment les microfissures sur la surface extérieure des ostéons (couche cémentante) va permettre d'activer localement le réseau de cellules mécano-sensibles (ostéocytes). Dans ce but, la théorie de la poroélasticité est utilisée pour modéliser le comportement mécanique du tissu cortical, et le lien entre l'existence de microfissures surfaciques et l'excitation des ostéocytes est montré à l'aide d'une étude numérique utilisant la méthode des éléments finis.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.01.003
Mot clés : Biomécanique, Modélisation poroélastique, Remodelage osseux, Ostéon, Fissuration
Keywords: Biomechanics, Poroelastic modelling, Bone remodelling, Osteon, Cracking

Thibault Lemaire 1; Fabien Borocin 1; Salah Naili 1

1 Laboratoire de mécanique physique, UMR CNRS 7052, B2OA, faculté des sciences et technologie, université Paris 12 – Val de Marne, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
@article{CRMECA_2008__336_4_354_0,
     author = {Thibault Lemaire and Fabien Borocin and Salah Naili},
     title = {M\'ecanotransduction du remodelage osseux : r\^ole des fissures \`a la p\'eriph\'erie des ost\'eons},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {354--362},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2008},
     doi = {10.1016/j.crme.2008.01.003},
     language = {fr},
}
TY  - JOUR
AU  - Thibault Lemaire
AU  - Fabien Borocin
AU  - Salah Naili
TI  - Mécanotransduction du remodelage osseux : rôle des fissures à la périphérie des ostéons
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 354
EP  - 362
VL  - 336
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2008.01.003
LA  - fr
ID  - CRMECA_2008__336_4_354_0
ER  - 
%0 Journal Article
%A Thibault Lemaire
%A Fabien Borocin
%A Salah Naili
%T Mécanotransduction du remodelage osseux : rôle des fissures à la périphérie des ostéons
%J Comptes Rendus. Mécanique
%D 2008
%P 354-362
%V 336
%N 4
%I Elsevier
%R 10.1016/j.crme.2008.01.003
%G fr
%F CRMECA_2008__336_4_354_0
Thibault Lemaire; Fabien Borocin; Salah Naili. Mécanotransduction du remodelage osseux : rôle des fissures à la périphérie des ostéons. Comptes Rendus. Mécanique, Volume 336 (2008) no. 4, pp. 354-362. doi : 10.1016/j.crme.2008.01.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.01.003/

[1] S.C. Cowin Bone Mechanics Handbook, CRC Press, Boca Raton, FL, 2001

[2] K. Piekarski; M. Munro Transport mechanism operating between blood supply and osteocytes in long bones, Nature, Volume 269 (1977) no. 5623, pp. 80-82

[3] S.C. Cowin Mechanosensation and fluid transport in living bone, J. Musculoskel Neuron Interaction, Volume 2 (2002) no. 3, pp. 256-260

[4] M.L. Knothe Tate “Whither flows the fluid in bone ?” An osteocyte's perspective, J. Biomech., Volume 36 (2003) no. 10, pp. 1409-1424

[5] E.H. Burger; J. Klein-Nulend; T.H. Smit Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon – a proposal, J. Biomech., Volume 36 (2003) no. 10, pp. 1453-1459

[6] J.G. Hazenberg; M. Freeley; E. Foran; T.C. Lee; D. Taylor Microdamage: a cell transducing mechanism based on ruptured osteocyte processes, J. Biomech., Volume 39 (2006) no. 11, pp. 2096-2103

[7] I. Westbroek; N.E. Ajubi; M.J. Ablas; C.M. Semeins; J. Klein-Nulend; E.H. Burger; P.J. Nijweide Differential stimulation of prostaglandin g/h synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow, Biochem. Biophys. Res. Commun., Volume 268 (2000), pp. 414-419

[8] R.S. Martin; D.B. Burr A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage, J. Biomech., Volume 15 (1982) no. 3, pp. 137-139

[9] M.B. Schaffer; K. Choi; C. Milgrom Aging and matrix microdamage accumulation in human compact bone, Bone, Volume 17 (1995) no. 6, pp. 521-525

[10] T.L. Norman; Z. Wang Microdamage of human cortical bone: incidence and morphology in long bones, Bone, Volume 20 (1997) no. 4, pp. 375-379

[11] J.W. Ager; G. Balooch; R.O. Ritchie Fracture, aging, and disease in bone, J. Mater. Res., Volume 21 (2006), pp. 1878-1892

[12] Y.N. Yeni; T.L. Norman Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth, J. Biomed. Mater. Res., Volume 51 (2000), pp. 504-509

[13] D. Zhang; S.C. Cowin Oscillatory bending of a poroelastic beam, J. Mech. Phys. Solids, Volume 42 (1994) no. 10, pp. 1575-1599

[14] B. Aoubiza; J.M. Crolet; A. Meunier On the mechanical characterization of compact bone structure using the homogenization theory, J. Biomech., Volume 29 (1996) no. 12, pp. 1539-1547

[15] A. Rémond; S. Naili Transverse isotropic poroelastic osteon model under cyclic loading, Mech. Res. Commun., Volume 32 (2005) no. 6, pp. 645-651

[16] T. Lemaire; S. Naili; A. Rémond Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement, J. Biomech. Eng., Volume 130 (2008), pp. 1-11

[17] M.A. Biot General theory of three-dimensional consolidation, J. Appl. Phys., Volume 12 (1941) no. 2, pp. 155-164

[18] O. Coussy Poromechanics, John Wiley & Sons, 2004

[19] C. Moyne; M.A. Murad Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure, Int. J. Solids and Structures, Volume 39 (2002) no. 25, pp. 6159-6190

[20] F.J. O'Brien; D. Taylor; G.R. Dickson; T.C. Lee Visualisation of three-dimensional microcracks in compact bone, J. Anal., Volume 197 (2000), pp. 413-420

[21] COMSOL Multiphysics. Model library, 2005. Grenoble, France

[22] A. Rémond, S. Naili, Finite element analysis of a poroelastic model: application to an osteon under cyclic loading, in: Proceedings of 4th ICCHMT, Vol. II, 2005, pp. 1080–1084

[23] A. Rémond; S. Naili; T. Lemaire Interstitial fluid flow in the osteon with spatial gradient of mechanical properties: a finite element study, Biomechanics and Modeling in Mechanobiology, Volume 7 (2008)

[24] T.M. Skerry; L. Bitenski; J. Chayen; L.E. Lanyon Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo, J. Bone Miner. Res., Volume 4 (1989), pp. 783-788

[25] M.L. Knothe Tate; P. Niederer; U. Knothe In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading, Bone, Volume 22 (1998) no. 2, pp. 107-117

[26] J. Klein-Nulend; A. van der Plas; C.M. Semeins; N.E. Ajubi; J.A. Frangos; P.J. Nijweide; E.H. Burger Sensitivity of osteocytes to biomechanical stress in vitro, FASEB J., Volume 9 (1995), pp. 441-445

[27] S. Weinbaum; S.C. Cowin; Y. Zeng A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J. Biomech., Volume 27 (1994) no. 3, pp. 339-360

[28] A.B. Fisher; S. Chien; A.I. Barakat; R.M. Nerem Endothelial cellular response to altered shear stress, Am. J. Physiol. Lung Cell Mol. Physiol., Volume 281 (2001), p. L529-L533

Cited by Sources:

Comments - Policy