[Mechanotransduction of bone remodelling: role of micro-cracks at the periphery of osteons]
Cortical bone is a kind of hard tissue found at the edges of long bones. Its unit structural elements are the cylindrical osteons. During daily activities, they are subjected to an important mechanical load. Bone remodelling is suspected to be initiated by different stimuli including micro-cracks and interstitial fluid movement. Stimulation of the mechano-sensitive cells (osteocytes) resulting from micro-cracks presence on the external wall (cement surface) of the osteon is studied. To this end, poroelasticity is used to describe cortical tissue behaviour. Finally, osteocytes network excitation because of surface micro-cracks presence is explained thanks to a finite element study.
L'os cortical est un type de tissu dense situé à la périphérie des os longs. Sa structure unitaire, de forme cylindrique, est appelée ostéon. Lors des activités quotidiennes, telles que la marche ou le maintien de posture, il est soumis à un chargement mécanique important. Différents stimuli, tels les mouvements de fluide interstitiel ou les microfissures, sont suspectés d'initier le remodelage osseux. Dans cette étude, nous montrons comment les microfissures sur la surface extérieure des ostéons (couche cémentante) va permettre d'activer localement le réseau de cellules mécano-sensibles (ostéocytes). Dans ce but, la théorie de la poroélasticité est utilisée pour modéliser le comportement mécanique du tissu cortical, et le lien entre l'existence de microfissures surfaciques et l'excitation des ostéocytes est montré à l'aide d'une étude numérique utilisant la méthode des éléments finis.
Accepted:
Published online:
Keywords: Biomechanics, Poroelastic modelling, Bone remodelling, Osteon, Cracking
Thibault Lemaire 1; Fabien Borocin 1; Salah Naili 1
@article{CRMECA_2008__336_4_354_0, author = {Thibault Lemaire and Fabien Borocin and Salah Naili}, title = {M\'ecanotransduction du remodelage osseux : r\^ole des fissures \`a la p\'eriph\'erie des ost\'eons}, journal = {Comptes Rendus. M\'ecanique}, pages = {354--362}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2008}, doi = {10.1016/j.crme.2008.01.003}, language = {fr}, }
TY - JOUR AU - Thibault Lemaire AU - Fabien Borocin AU - Salah Naili TI - Mécanotransduction du remodelage osseux : rôle des fissures à la périphérie des ostéons JO - Comptes Rendus. Mécanique PY - 2008 SP - 354 EP - 362 VL - 336 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2008.01.003 LA - fr ID - CRMECA_2008__336_4_354_0 ER -
Thibault Lemaire; Fabien Borocin; Salah Naili. Mécanotransduction du remodelage osseux : rôle des fissures à la périphérie des ostéons. Comptes Rendus. Mécanique, Volume 336 (2008) no. 4, pp. 354-362. doi : 10.1016/j.crme.2008.01.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.01.003/
[1] Bone Mechanics Handbook, CRC Press, Boca Raton, FL, 2001
[2] Transport mechanism operating between blood supply and osteocytes in long bones, Nature, Volume 269 (1977) no. 5623, pp. 80-82
[3] Mechanosensation and fluid transport in living bone, J. Musculoskel Neuron Interaction, Volume 2 (2002) no. 3, pp. 256-260
[4] “Whither flows the fluid in bone ?” An osteocyte's perspective, J. Biomech., Volume 36 (2003) no. 10, pp. 1409-1424
[5] Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon – a proposal, J. Biomech., Volume 36 (2003) no. 10, pp. 1453-1459
[6] Microdamage: a cell transducing mechanism based on ruptured osteocyte processes, J. Biomech., Volume 39 (2006) no. 11, pp. 2096-2103
[7] Differential stimulation of prostaglandin g/h synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow, Biochem. Biophys. Res. Commun., Volume 268 (2000), pp. 414-419
[8] A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage, J. Biomech., Volume 15 (1982) no. 3, pp. 137-139
[9] Aging and matrix microdamage accumulation in human compact bone, Bone, Volume 17 (1995) no. 6, pp. 521-525
[10] Microdamage of human cortical bone: incidence and morphology in long bones, Bone, Volume 20 (1997) no. 4, pp. 375-379
[11] Fracture, aging, and disease in bone, J. Mater. Res., Volume 21 (2006), pp. 1878-1892
[12] Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth, J. Biomed. Mater. Res., Volume 51 (2000), pp. 504-509
[13] Oscillatory bending of a poroelastic beam, J. Mech. Phys. Solids, Volume 42 (1994) no. 10, pp. 1575-1599
[14] On the mechanical characterization of compact bone structure using the homogenization theory, J. Biomech., Volume 29 (1996) no. 12, pp. 1539-1547
[15] Transverse isotropic poroelastic osteon model under cyclic loading, Mech. Res. Commun., Volume 32 (2005) no. 6, pp. 645-651
[16] Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement, J. Biomech. Eng., Volume 130 (2008), pp. 1-11
[17] General theory of three-dimensional consolidation, J. Appl. Phys., Volume 12 (1941) no. 2, pp. 155-164
[18] Poromechanics, John Wiley & Sons, 2004
[19] Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure, Int. J. Solids and Structures, Volume 39 (2002) no. 25, pp. 6159-6190
[20] Visualisation of three-dimensional microcracks in compact bone, J. Anal., Volume 197 (2000), pp. 413-420
[21] COMSOL Multiphysics. Model library, 2005. Grenoble, France
[22] A. Rémond, S. Naili, Finite element analysis of a poroelastic model: application to an osteon under cyclic loading, in: Proceedings of 4th ICCHMT, Vol. II, 2005, pp. 1080–1084
[23] Interstitial fluid flow in the osteon with spatial gradient of mechanical properties: a finite element study, Biomechanics and Modeling in Mechanobiology, Volume 7 (2008)
[24] Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo, J. Bone Miner. Res., Volume 4 (1989), pp. 783-788
[25] In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading, Bone, Volume 22 (1998) no. 2, pp. 107-117
[26] Sensitivity of osteocytes to biomechanical stress in vitro, FASEB J., Volume 9 (1995), pp. 441-445
[27] A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J. Biomech., Volume 27 (1994) no. 3, pp. 339-360
[28] Endothelial cellular response to altered shear stress, Am. J. Physiol. Lung Cell Mol. Physiol., Volume 281 (2001), p. L529-L533
Cited by Sources:
Comments - Policy