Comptes Rendus
Hypertemperature in thermoelastic solids
Comptes Rendus. Mécanique, Volume 336 (2008) no. 4, pp. 347-353.

The classical thermomechanics of solids is extended to incorporate a non-trivial dependence of the internal energy density function on the gradient of entropy. A generalized heat equation is derived for rigid heat conductors. The theory is shown to differ from existing models including gradient of temperature effects in the free energy.

Une extension de la thermomécanique classique des milieux continus est proposée afin d'incorporer des effets de gradient d'entropie dans la fonction densité d'énergie interne. On en déduit une équation de la chaleur généralisée pour les conducteurs rigides. La théorie proposée s'avère distincte d'une formulation basée sur l'introduction du gradient de température dans la densité d'énergie libre du milieu.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.01.007
Keywords: Continuum mechanics, Continuum thermomechanics, Entropy gradient, Temperature gradient, Generalized heat equation
Mot clés : Milieux continus, Thermomécanique des milieux continus, Gradient d'entropie, Gradient de température, Équation de la chaleur généralisée
Samuel Forest 1; Michel Amestoy 1

1 Mines Paris, ParisTech, Centre des Matériaux / CNRS UMR 7633, BP 87, 91003 Evry cedex, France
@article{CRMECA_2008__336_4_347_0,
     author = {Samuel Forest and Michel Amestoy},
     title = {Hypertemperature in thermoelastic solids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {347--353},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2008},
     doi = {10.1016/j.crme.2008.01.007},
     language = {en},
}
TY  - JOUR
AU  - Samuel Forest
AU  - Michel Amestoy
TI  - Hypertemperature in thermoelastic solids
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 347
EP  - 353
VL  - 336
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2008.01.007
LA  - en
ID  - CRMECA_2008__336_4_347_0
ER  - 
%0 Journal Article
%A Samuel Forest
%A Michel Amestoy
%T Hypertemperature in thermoelastic solids
%J Comptes Rendus. Mécanique
%D 2008
%P 347-353
%V 336
%N 4
%I Elsevier
%R 10.1016/j.crme.2008.01.007
%G en
%F CRMECA_2008__336_4_347_0
Samuel Forest; Michel Amestoy. Hypertemperature in thermoelastic solids. Comptes Rendus. Mécanique, Volume 336 (2008) no. 4, pp. 347-353. doi : 10.1016/j.crme.2008.01.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.01.007/

[1] B.D. Coleman; W. Noll The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., Volume 13 (1963), pp. 167-178

[2] B.D. Coleman; J.V. Mizel Thermodynamics and departures from Fourier's law of heat conduction, Arch. Ration. Mech. Anal., Volume 13 (1963), pp. 245-261

[3] M. Cattaneo Sur la forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, Volume 247 (1958), pp. 431-433

[4] I. Müller; T. Ruggeri Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37, 1993

[5] C. Boutin Microstructural influence on heat-conduction, Int. J. Heat Mass Transfer, Volume 38 (1995), pp. 3181-3195

[6] S. Forest; J.-M. Cardona; R. Sievert Thermoelasticity of second-grade media (G.A. Maugin; R. Drouot; F. Sidoroff, eds.), Continuum Thermomechanics, The Art and Science of Modelling Material Behaviour, Paul Germain's Anniversary Volume, Kluwer Academic Publishers, 2000, pp. 163-176

[7] J.-M. Cardona; S. Forest; R. Sievert Towards a theory of second grade thermoelasticity, Extracta Math., Volume 14 (1999) no. 2, pp. 127-140

[8] P. Ireman; Q.-S. Nguyen Using the gradients of temperature and internal parameters in continuum mechanics, C. R. Mecanique, Volume 332 (2004), pp. 249-255

[9] Q.-S. Nguyen; S. Andrieux The non-local generalized standard approach: a consistent gradient theory, C. R. Mecanique, Volume 333 (2005), pp. 139-145

[10] C. Papenfuss; S. Forest Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom, J. Non-Equilib. Thermodynam., Volume 31 (2006), pp. 319-353

[11] M. Frémond; B. Nedjar Damage, gradient of damage and principle of virtual power, Int. J. Solids Structures, Volume 33 (1996), pp. 1083-1103

[12] M.E. Gurtin Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D, Volume 92 (1996), pp. 178-192

[13] J.W. Cahn; J.E. Hilliard Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., Volume 28 (1958), pp. 258-267

[14] H. Gouin; T. Ruggeri Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers, Eur. J. Mech. B Fluids, Volume 24 (2005), pp. 596-613

[15] P. Germain La méthode des puissances virtuelles en mécanique des milieux continus, première partie : théorie du second gradient, J. Mécanique, Volume 12 (1973), pp. 235-274

[16] G.A. Maugin Internal variables and dissipative structures, J. Non-Equilib. Thermodyn., Volume 15 (1990), pp. 173-192

[17] G.A. Maugin On the thermomechanics of continuous media with diffusion and/or weak nonlocality, Arch. Appl. Mech., Volume 75 (2006), pp. 723-738

[18] B. Svendsen On the thermodynamics of thermoelastic materials with additional scalar degrees of freedom, Continuum Mech. Thermodynam., Volume 4 (1999), pp. 247-262

Cited by Sources:

Comments - Policy


Articles of potential interest

Entropy and temperature gradients thermomechanics: Dissipation, heat conduction inequality and heat equation

Mahaman-Habibou Maitournam

C. R. Méca (2012)


Gradient thermodynamics and heat equations

Quoc-Son Nguyen

C. R. Méca (2010)


Using the gradients of temperature and internal parameters in Continuum Thermodynamics

Peter Ireman; Quoc-Son Nguyen

C. R. Méca (2004)