Comptes Rendus
Fatigue growth of embedded elliptical cracks using Paris-type law in a hybrid weight function approach
[Propagation de fissures elliptiques internes avec la loi de Paris dans l'approche d'hybridation des fonctions de poids]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 4, pp. 390-397.

Une méthode, basée sur l'hybridation des fonctions de poids, a récemment été proposée pour améliorer le calcul du facteur d'intensité de contrainte (FIC) en mode I sous chargement statique, [B.K. Hachi, S. Rechak, M. Haboussi, M. Taghite, Modélisation des fissures elliptiques internes par hybridation de fonctions de poids, C. R. Mecanique 334 (2006) 83–90]. On se propose dans cette présente Note, d'appliquer l'approche d'hybridation pour décrire la propagation de fissures elliptiques internes dans un milieu infini. La loi de propagation de Paris est alors incorporée dans le code de calcul développé sur la base de l'hybridation, dans le cadre d'une approche à deux degrés de liberté pour gérer l'évolution de la forme de la fissure. Pour valider cette méthode, des simulations de l'évolution des fissures elliptiques internes de différentes configurations (rapport des axes, avance maximum de la fissure) correspondant à la rupture par fatigue ou fragile ont été réalisées. Elles ont permis de montrer, après comparaisons avec d'autres méthodes numériques telles que la méthode des fonctions de poids ou la méthode des éléments finis étendue, la pertinence de l'approche d'hybridation dans le traitement d'un aspect de la fissuration en fatigue.

A hybrid weight function method (HWFM), improving the calculation of the stress intensity factor (SIF) in mode I, has recently been proposed and validated in the static case [B.K. Hachi, S. Rechak, M. Haboussi, M. Taghite, Modélisation des fissures elliptiques internes par hybridation de fonctions de poids, C. R. Mecanique 334 (2006) 83–90]. In the present Note, the hybridization approach is presented for the fatigue crack growth prediction of embedded elliptical crack in infinite bodies. Hence, Paris's law of crack propagation is incorporated into the developed hybridization-based computer code, along with two degrees of freedom technique for managing the crack evolution and the cracked structure fatigue life. Simulations of the evolution of elliptical cracks (in infinite bodies) of different configurations (ellipse axes ratio, maximum crack advance) corresponding to fatigue and brittle fracture have been conducted. Comparisons with other numerical methods such as the classical weight function method (WFM) or the extended finite element methods (X-FEM) show the pertinence of the HWFM in the treatment of an aspect of fatigue cracking problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2008.01.008
Keywords: Fatigue, Fatigue elliptical crack growth, Hybridization, Weight function, Paris law, Two degrees of freedom method
Mot clés : Fatigue, Propagation de fissure elliptique par fatigue, Hybridation, Fonction de poids, Loi de Paris, Méthode à de deux degrés de liberté

Brahim El Khalil Hachi 1 ; Said Rechak 2 ; Mohamed Haboussi 3 ; M'barek Taghite 3 ; Gérard Maurice 3

1 Departement of Electromechanical Engineering, C.U. Djelfa, BP 3117 Ain-Cheih, 17000, Djelfa, Algeria
2 LGMD, Departement of Mechanical Engineering, E.N.P., BP 182 Harrach 16200, Algiers, Algeria
3 LEMTA, Nancy-University, CNRS, 2, avenue de la Forêt de Haye, BP 160, 54504 Vandœuvre cedex, France
@article{CRMECA_2008__336_4_390_0,
     author = {Brahim El Khalil Hachi and Said Rechak and Mohamed Haboussi and M'barek Taghite and G\'erard Maurice},
     title = {Fatigue growth of embedded elliptical cracks using {Paris-type} law in a hybrid weight function approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {390--397},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2008},
     doi = {10.1016/j.crme.2008.01.008},
     language = {en},
}
TY  - JOUR
AU  - Brahim El Khalil Hachi
AU  - Said Rechak
AU  - Mohamed Haboussi
AU  - M'barek Taghite
AU  - Gérard Maurice
TI  - Fatigue growth of embedded elliptical cracks using Paris-type law in a hybrid weight function approach
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 390
EP  - 397
VL  - 336
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2008.01.008
LA  - en
ID  - CRMECA_2008__336_4_390_0
ER  - 
%0 Journal Article
%A Brahim El Khalil Hachi
%A Said Rechak
%A Mohamed Haboussi
%A M'barek Taghite
%A Gérard Maurice
%T Fatigue growth of embedded elliptical cracks using Paris-type law in a hybrid weight function approach
%J Comptes Rendus. Mécanique
%D 2008
%P 390-397
%V 336
%N 4
%I Elsevier
%R 10.1016/j.crme.2008.01.008
%G en
%F CRMECA_2008__336_4_390_0
Brahim El Khalil Hachi; Said Rechak; Mohamed Haboussi; M'barek Taghite; Gérard Maurice. Fatigue growth of embedded elliptical cracks using Paris-type law in a hybrid weight function approach. Comptes Rendus. Mécanique, Volume 336 (2008) no. 4, pp. 390-397. doi : 10.1016/j.crme.2008.01.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.01.008/

[1] B.K. Hachi; S. Rechak; M. Haboussi; M. Taghite; G. Maurice Computation of stress intensity factor in cracked plates under bending in static and fatigue by a hybrid method, Int. J. Fatigue, Volume 29 (2007), pp. 1904-1912

[2] B.K. Hachi; S. Rechak; M. Haboussi; M. Taghite Modélisation des fissures elliptiques internes par hybridation de fonctions de poids, C. R. Mecanique, Volume 334 (2006), pp. 83-90

[3] J.C. Newman; I.S. Raju An empirical stress-intensity factor equation for the surface crack, Engrg. Fracture Mech., Volume 15 (1981) no. 1/2, pp. 185-192

[4] S.R. Mettu, I.S. Raju, R.G. Forman, Stress intensity factors for part-through surface cracks in hollow cylinders, NASA Technical Report 1992, N° JSC25685, LESC 30124

[5] C. Guozhong; C. Kankda Analysis of embedded elliptical cracks in cylindrical pressure vessels, Int. J. Press. Vess. Piping, Volume 64 (1995), pp. 153-159

[6] I.V. Orynyak; M.V. Borodii Point weight function method application for semi-elliptical mode I cracks, Int. J. Fracture, Volume 70 (1995), pp. 117-124

[7] A.J. Krasowsky; I.V. Orynyak; Yu.A. Gienko Approximate closed from weight function for an elliptical crack in an infinite body, Int. J. Fracture, Volume 99-1/2 (1999), pp. 117-130

[8] N. Sukumar; D.L. Chopp; B. Moran Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Engrg. Fracture Mech., Volume 70 (2003), pp. 29-48

[9] P. Paris; F. Erdogan A critical analysis of crack propagation laws, J. Basic Engrg. Trans. Amer. Soc. Mech. Engineers (1963), pp. 528-534

[10] M. Oore; D.J. Burns Estimation of stress intensity factors for embedded irregular cracks subjected to arbitrary normal stress fields, Trans. ASME, J. Press. Vess. Technology, Volume 102-2 (1980), pp. 202-211

[11] X.B. Lin; R.A. Smith Numerical analysis of fatigue growth of external surface cracks in pressurised cylinders, Int. J. Press. Vess. Piping, Volume 71 (1997), pp. 293-300

[12] V. Lazarus Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading, Int. J. Fracture, Volume 122 (2003), pp. 23-46

[13] J.R. Rice, Weight function theory for three-dimensional elastic crack analysis, in: R.P. Wei, R.P. Gangloff (Eds.), Fracture Mechanics: Perspectives and Directions (Twentieth Symposium), American Society for Testing and Materials, STP 1020, 1989 Philadelphia, USA

[14] A.F. Bower; M. Ortiz Solution of three-dimensional crack problems by a finite perturbation method, J. Mech. Phys. Solids, Volume 38-4 (1990), pp. 443-480

Cité par Sources :

Commentaires - Politique