Comptes Rendus
Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure
Comptes Rendus. Mécanique, Volume 336 (2008) no. 5, pp. 464-470.

In this Note, a numerical approach based on the finite volume method and a full multigrid acceleration is used, applied to the classical Rayleigh Bénard convection problem. Fine grids corresponding to 2562 nodes are used and Benchmark solutions are proposed for Rayleigh numbers ranging from 103 to 106. Some streamlines and isotherms are presented to analyze the natural convection flow patterns set up by the buoyancy force.

La présente investigation porte sur une étude numérique bidimensionnelle relative à un problème de convection naturelle. Il s'agit en l'occurrence d'une convection de type Rayleigh Bénard dans une cavité carrée. Il est à noter qu'une convection de type Rayleigh Bènard peut être rencontrée dans de nombreuses applications physiques. On peut citer à titre d'exemple, le chauffage d'une pièce dans un immeuble ou encore le refroidissement de composants électroniques. Afin de correctement simuler l'écoulement, nous avons utilisé dans cette étude un maillage assez fin correspondant à 2562 nœuds de calcul. La résolution numérique est basée sur une formulation de type volumes finis et une accélération multigrille. Des solutions Benchmark sont alors proposées relativement aux nombres de Rayleigh 103, 104, 105 et 106. Une comparaison des résultats obtenus par la méthode classique RBSOR et la méthode multigrille est également faite et montre qu'un facteur gain de 17 peut être atteint.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.02.004
Keywords: Heat transfer, Rayleigh–Bénard convection
Mot clés : Transferts thermiques, Convection Rayleigh–Bénard

Nasreddine Ouertatani 1; Nader Ben Cheikh 1; Brahim Ben Beya 1; Taieb Lili 1

1 Faculté des sciences de Tunis, département de physique, campus universitaire, 2092 El-Manar II, Tunisia
@article{CRMECA_2008__336_5_464_0,
     author = {Nasreddine Ouertatani and Nader Ben Cheikh and Brahim Ben Beya and Taieb Lili},
     title = {Numerical simulation of two-dimensional {Rayleigh{\textendash}B\'enard} convection in an enclosure},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {464--470},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2008},
     doi = {10.1016/j.crme.2008.02.004},
     language = {en},
}
TY  - JOUR
AU  - Nasreddine Ouertatani
AU  - Nader Ben Cheikh
AU  - Brahim Ben Beya
AU  - Taieb Lili
TI  - Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 464
EP  - 470
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2008.02.004
LA  - en
ID  - CRMECA_2008__336_5_464_0
ER  - 
%0 Journal Article
%A Nasreddine Ouertatani
%A Nader Ben Cheikh
%A Brahim Ben Beya
%A Taieb Lili
%T Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure
%J Comptes Rendus. Mécanique
%D 2008
%P 464-470
%V 336
%N 5
%I Elsevier
%R 10.1016/j.crme.2008.02.004
%G en
%F CRMECA_2008__336_5_464_0
Nasreddine Ouertatani; Nader Ben Cheikh; Brahim Ben Beya; Taieb Lili. Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure. Comptes Rendus. Mécanique, Volume 336 (2008) no. 5, pp. 464-470. doi : 10.1016/j.crme.2008.02.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.02.004/

[1] Heat Transfer Handbook (A. Bejan; A.D. Kraus, eds.), Wiley, New York, 2003

[2] Transport Phenomena in Porous Media, II (D.B. Ingham; I. Pop, eds.), Pergamon, Oxford, 2002

[3] Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York, 2000

[4] N.B. Cheikh; B.B. Beya; T. Lili Aspect ratio effect on natural convection flow in a cavity submitted to a periodical temperature boundary, J. Heat Transfer, Volume 129 (2007), pp. 1060-1068

[5] V.A.F. Costa; M.S.A. Oliveira; A.C.M. Sousa Control of laminar natural convection in differentially heated square enclosures using solid inserts at the corners, Int. J. Heat Mass Transfer, Volume 46 (2003), pp. 3529-3537

[6] G. Accary; I. Raspo A 3D finite volume method for the prediction of a supercritical fluid buoyant flow in a differentially heated cavity, Int. J. Heat Mass Transfer, Volume 35 (2006), pp. 1316-1331

[7] B. Calgagni; F. Marsili; M. Paroncini Natural convective heat transfer in square enclosures heated from below, Appl. Therm. Eng., Volume 25 (2005), pp. 2522-2531

[8] J.K. Platten; M. Marcoux; A. Mojtabi The Rayleigh–Bénard problem in extremely confined geometries with and without the Soret effect, C. R. Mecanique, Volume 335 (2007), pp. 638-654

[9] F. Stella; E. Bucchigani Rayleigh–Bénard convection in limited domains: part 1 – oscillatory flow, Numer. Heat Transfer A, Volume 36 (1999), pp. 1-16

[10] P. Le Quéré Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. Fluids, Volume 20 (1991), pp. 29-41

[11] G. De Vahl Davis Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Methods Fluids, Volume 3 (1983), pp. 249-264

[12] S. Xin; P. Le Quéré An extended Chebyshev pseudo-spectral benchmark for the differentially heated cavity, Int. J. Numer. Methods Fluids, Volume 40 (2002), pp. 981-998

[13] M. Hortmann; M. Peric; G. Scheuerer Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Numer. Methods Fluids, Volume 11 (1990), pp. 189-207

[14] N.B. Cheikh; B.B. Beya; T. Lili Benchmark solution for time-dependent natural convection flows with an accelerated full-multigrid method, Numer. Heat Transfer B, Volume 52 (2007), pp. 131-151

[15] Y. Achdou; J.L. Guermond Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., Volume 37 (2000), pp. 799-826

[16] S.V. Patankar Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980

[17] B.P. Leonard A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Meth. Appl. Mech. Eng., Volume 19 (1979), pp. 59-98

[18] R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994

[19] E. Nobile Simulation of time-dependent flow in cavities with the additive-correction multigrid method, Part I: Mathematical formulation, Numer. Heat Transfer B, Volume 30 (1996), pp. 341-350

[20] C.Y. Soong; P.Y. Tzeng; D.C. Chiang; T.S. Sheu Numerical study on mode-transition of natural convection in differentially heated inclined enclosures, Int. J. Heat Mass Transfer, Volume 39 (1996), pp. 2869-2882

[21] W. Hackbusch Multigrid, Methods and Applications, Springer-Verlag, Berlin/New York, 1985

[22] M. Hortmann; M. Peric; G. Scheuerer Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Numer. Methods Fluids, Volume 11 (1990), pp. 189-207

[23] N.B. Cheikh; B.B. Beya; T. Lili Natural convection flow in a tall enclosure using a multigrid method, C. R. Mecanique, Volume 335 (2007), pp. 113-118

Cited by Sources:

Comments - Policy