[Simulation numérique bidimensionnelle d'une convection de type Rayleigh–Bénard dans une cavité carrée]
La présente investigation porte sur une étude numérique bidimensionnelle relative à un problème de convection naturelle. Il s'agit en l'occurrence d'une convection de type Rayleigh Bénard dans une cavité carrée. Il est à noter qu'une convection de type Rayleigh Bènard peut être rencontrée dans de nombreuses applications physiques. On peut citer à titre d'exemple, le chauffage d'une pièce dans un immeuble ou encore le refroidissement de composants électroniques. Afin de correctement simuler l'écoulement, nous avons utilisé dans cette étude un maillage assez fin correspondant à 2562 nœuds de calcul. La résolution numérique est basée sur une formulation de type volumes finis et une accélération multigrille. Des solutions Benchmark sont alors proposées relativement aux nombres de Rayleigh 103, 104, 105 et 106. Une comparaison des résultats obtenus par la méthode classique RBSOR et la méthode multigrille est également faite et montre qu'un facteur gain de 17 peut être atteint.
In this Note, a numerical approach based on the finite volume method and a full multigrid acceleration is used, applied to the classical Rayleigh Bénard convection problem. Fine grids corresponding to 2562 nodes are used and Benchmark solutions are proposed for Rayleigh numbers ranging from 103 to 106. Some streamlines and isotherms are presented to analyze the natural convection flow patterns set up by the buoyancy force.
Accepté le :
Publié le :
Mots-clés : Transferts thermiques, Convection Rayleigh–Bénard
Nasreddine Ouertatani 1 ; Nader Ben Cheikh 1 ; Brahim Ben Beya 1 ; Taieb Lili 1
@article{CRMECA_2008__336_5_464_0, author = {Nasreddine Ouertatani and Nader Ben Cheikh and Brahim Ben Beya and Taieb Lili}, title = {Numerical simulation of two-dimensional {Rayleigh{\textendash}B\'enard} convection in an enclosure}, journal = {Comptes Rendus. M\'ecanique}, pages = {464--470}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2008}, doi = {10.1016/j.crme.2008.02.004}, language = {en}, }
TY - JOUR AU - Nasreddine Ouertatani AU - Nader Ben Cheikh AU - Brahim Ben Beya AU - Taieb Lili TI - Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure JO - Comptes Rendus. Mécanique PY - 2008 SP - 464 EP - 470 VL - 336 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2008.02.004 LA - en ID - CRMECA_2008__336_5_464_0 ER -
%0 Journal Article %A Nasreddine Ouertatani %A Nader Ben Cheikh %A Brahim Ben Beya %A Taieb Lili %T Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure %J Comptes Rendus. Mécanique %D 2008 %P 464-470 %V 336 %N 5 %I Elsevier %R 10.1016/j.crme.2008.02.004 %G en %F CRMECA_2008__336_5_464_0
Nasreddine Ouertatani; Nader Ben Cheikh; Brahim Ben Beya; Taieb Lili. Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure. Comptes Rendus. Mécanique, Volume 336 (2008) no. 5, pp. 464-470. doi : 10.1016/j.crme.2008.02.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.02.004/
[1] Heat Transfer Handbook (A. Bejan; A.D. Kraus, eds.), Wiley, New York, 2003
[2] Transport Phenomena in Porous Media, II (D.B. Ingham; I. Pop, eds.), Pergamon, Oxford, 2002
[3] Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York, 2000
[4] Aspect ratio effect on natural convection flow in a cavity submitted to a periodical temperature boundary, J. Heat Transfer, Volume 129 (2007), pp. 1060-1068
[5] Control of laminar natural convection in differentially heated square enclosures using solid inserts at the corners, Int. J. Heat Mass Transfer, Volume 46 (2003), pp. 3529-3537
[6] A 3D finite volume method for the prediction of a supercritical fluid buoyant flow in a differentially heated cavity, Int. J. Heat Mass Transfer, Volume 35 (2006), pp. 1316-1331
[7] Natural convective heat transfer in square enclosures heated from below, Appl. Therm. Eng., Volume 25 (2005), pp. 2522-2531
[8] The Rayleigh–Bénard problem in extremely confined geometries with and without the Soret effect, C. R. Mecanique, Volume 335 (2007), pp. 638-654
[9] Rayleigh–Bénard convection in limited domains: part 1 – oscillatory flow, Numer. Heat Transfer A, Volume 36 (1999), pp. 1-16
[10] Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. Fluids, Volume 20 (1991), pp. 29-41
[11] Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Methods Fluids, Volume 3 (1983), pp. 249-264
[12] An extended Chebyshev pseudo-spectral benchmark for the differentially heated cavity, Int. J. Numer. Methods Fluids, Volume 40 (2002), pp. 981-998
[13] Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Numer. Methods Fluids, Volume 11 (1990), pp. 189-207
[14] Benchmark solution for time-dependent natural convection flows with an accelerated full-multigrid method, Numer. Heat Transfer B, Volume 52 (2007), pp. 131-151
[15] Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., Volume 37 (2000), pp. 799-826
[16] Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980
[17] A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Meth. Appl. Mech. Eng., Volume 19 (1979), pp. 59-98
[18] et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994
[19] Simulation of time-dependent flow in cavities with the additive-correction multigrid method, Part I: Mathematical formulation, Numer. Heat Transfer B, Volume 30 (1996), pp. 341-350
[20] Numerical study on mode-transition of natural convection in differentially heated inclined enclosures, Int. J. Heat Mass Transfer, Volume 39 (1996), pp. 2869-2882
[21] Multigrid, Methods and Applications, Springer-Verlag, Berlin/New York, 1985
[22] Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Numer. Methods Fluids, Volume 11 (1990), pp. 189-207
[23] Natural convection flow in a tall enclosure using a multigrid method, C. R. Mecanique, Volume 335 (2007), pp. 113-118
- NeuroSEM: a hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements, Computer Methods in Applied Mechanics and Engineering, Volume 433 (2025), p. 23 (Id/No 117498) | DOI:10.1016/j.cma.2024.117498 | Zbl:7967162
- Convective heat transport in yield stress nanofluids in a differentially heated square enclosure, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Volume 47 (2025) no. 1, p. 5258 | DOI:10.1080/15567036.2021.1892884
- Stability Analysis of Buoyancy-Driven Flow in Square Cavity, Proceedings of Fluid Mechanics and Fluid Power (FMFP) 2023, Vol. 1 (2025), p. 749 | DOI:10.1007/978-981-97-6776-2_61
- Rayleigh–Bénard Convection With Multiple Solutions in Trapezoidal Closed Cavities, ASME Journal of Heat and Mass Transfer, Volume 146 (2024) no. 6 | DOI:10.1115/1.4065005
- Beacon, a Lightweight Deep Reinforcement Learning Benchmark Library for Flow Control, Applied Sciences, Volume 14 (2024) no. 9, p. 3561 | DOI:10.3390/app14093561
- Numerical Simulation of Droplet Coalescence Using Meshless Radial Basis Function and Domain Decomposition Method, CFD Letters, Volume 17 (2024) no. 4, p. 1 | DOI:10.37934/cfdl.17.4.117
- Co-existence of Multiple Steady States in Bottom Heated Trapezoidal Closed Cavities, Fluid Mechanics and Fluid Power, Volume 2 (2024), p. 191 | DOI:10.1007/978-981-99-5752-1_16
- Laminar Natural Convection of Water-Based Alumina Nanofluids in a Square Enclosure, Heat Transfer Engineering, Volume 45 (2024) no. 14, p. 1173 | DOI:10.1080/01457632.2023.2249727
- Linear Stability Analyses of Rayleigh-Benard Convection due to Ternary Hybrid Nanofluid, Journal of Mines, Metals and Fuels (2024), p. 125 | DOI:10.18311/jmmf/2024/47256
- Magneto-thermo-gravitational Rayleigh–Bénard convection of an electro-conductive micropolar fluid in a square enclosure: Finite volume computation, Numerical Heat Transfer, Part A: Applications (2024), p. 1 | DOI:10.1080/10407782.2023.2299290
- Bifurcation analysis of a two-dimensional magnetic Rayleigh-Bénard problem, Physica D, Volume 467 (2024), p. 12 (Id/No 134270) | DOI:10.1016/j.physd.2024.134270 | Zbl:7893199
- An experimental and numerical investigation into the sensitivity of Rayleigh–Bénard convection to heat loss through the sidewalls, Physica D: Nonlinear Phenomena, Volume 464 (2024), p. 134190 | DOI:10.1016/j.physd.2024.134190
- Dynamics of a hot flexible cantilever plate under natural convection heat transfer in a square cavity, Physics of Fluids, Volume 36 (2024) no. 11 | DOI:10.1063/5.0235998
- Heat transport enhancement by rotating bottom endwall in a cylindrical Rayleigh–Bénard convection, Physics of Fluids, Volume 36 (2024) no. 11 | DOI:10.1063/5.0239795
- Learning mappings of thermal updraft fields under unknown operating conditions using a deep operator network, Physics of Fluids, Volume 36 (2024) no. 6 | DOI:10.1063/5.0205695
- , Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India (2024), p. 535 | DOI:10.1615/ihmtc-2023.870
- Representative velocity scale of Rayleigh‐Bénard convection with shear‐thinning fluids, The Canadian Journal of Chemical Engineering, Volume 102 (2024) no. 2, p. 1007 | DOI:10.1002/cjce.25091
- Non-newtonian natural convection in a square box submitted to horizontal heat flux and magnetic field, Thermal Science, Volume 28 (2024) no. 4 Part A, p. 3049 | DOI:10.2298/tsci231030079n
- A non-Newtonian thermal lattice Boltzmann method for simulation of Rayleigh–Bénard convection of power-law fluids, AIP Advances, Volume 13 (2023) no. 11 | DOI:10.1063/5.0168404
- Physics-data combined machine learning for parametric reduced-order modelling of nonlinear dynamical systems in small-data regimes, Computer Methods in Applied Mechanics and Engineering, Volume 404 (2023), p. 49 (Id/No 115771) | DOI:10.1016/j.cma.2022.115771 | Zbl:1536.76029
- DNS of buoyancy-driven flows using EDAC formulation solved by high-order method, Computers and Fluids, Volume 265 (2023), p. 14 (Id/No 105997) | DOI:10.1016/j.compfluid.2023.105997 | Zbl:1521.76095
- On the convergence of a low order Lagrange finite element approach for natural convection problems, Computers Mathematics with Applications, Volume 147 (2023), pp. 259-277 | DOI:10.1016/j.camwa.2023.07.023 | Zbl:1538.76107
- Laminar Rayleigh–Benard convection in a closed square field with meshless radial basis function method, Curved and Layered Structures, Volume 10 (2023) no. 1 | DOI:10.1515/cls-2022-0204
- Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review, Energy Reports, Volume 10 (2023), p. 3757 | DOI:10.1016/j.egyr.2023.10.036
- Electro-thermo-convection in a high Prandtl number fluid: Flow transition and heat transfer, International Journal of Heat and Mass Transfer, Volume 201 (2023), p. 123630 | DOI:10.1016/j.ijheatmasstransfer.2022.123630
- Study of Rayleigh–Bénard Convection in Jet-A fuel with non-Oberbeck–Boussinesq effect, International Journal of Thermal Sciences, Volume 185 (2023), p. 108021 | DOI:10.1016/j.ijthermalsci.2022.108021
- Wall slip effects in Rayleigh–Bénard convection of viscoplastic materials, Multidiscipline Modeling in Materials and Structures, Volume 19 (2023) no. 6, p. 1275 | DOI:10.1108/mmms-05-2023-0185
- Free convection of thermodependent non-Newtonian fluids in a square enclosure partially heated at one side, Numerical Heat Transfer, Part A: Applications (2023), p. 1 | DOI:10.1080/10407782.2023.2284337
- Symmetry properties and bifurcations of viscoelastic thermovibrational convection in a square cavity, Physical Review E, Volume 108 (2023) no. 6 | DOI:10.1103/physreve.108.065101
- , Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023 (2023), p. 13 | DOI:10.1615/thmt-23.430
- , Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023 (2023), p. 13 | DOI:10.1615/ichmt.thmt-23.430
- Energy Efficiency Analysis of Coupled Thermal Radiation and Free Convection within a Square Enclosure with Internal Heating, WSEAS TRANSACTIONS ON HEAT AND MASS TRANSFER, Volume 18 (2023), p. 207 | DOI:10.37394/232012.2023.18.17
- , XVII MEXICAN SYMPOSIUM ON MEDICAL PHYSICS, Volume 2947 (2023), p. 040020 | DOI:10.1063/5.0171746
- , XVII MEXICAN SYMPOSIUM ON MEDICAL PHYSICS, Volume 2947 (2023), p. 040023 | DOI:10.1063/5.0172252
- , XVII MEXICAN SYMPOSIUM ON MEDICAL PHYSICS, Volume 2947 (2023), p. 040029 | DOI:10.1063/5.0172255
- Hybrid forced-buoyancy convection in a channel with a backward facing step, International Journal of Heat and Mass Transfer, Volume 194 (2022), p. 122963 | DOI:10.1016/j.ijheatmasstransfer.2022.122963
- Evolutions of the electromagnetic signatures induced by the propagating wake behind a submerged body, International Journal of Heat and Mass Transfer, Volume 194 (2022), p. 123105 | DOI:10.1016/j.ijheatmasstransfer.2022.123105
- Determination of evaporation rate of warm water placed inside a partially-filled top cooled enclosure, International Journal of Thermal Sciences, Volume 179 (2022), p. 107612 | DOI:10.1016/j.ijthermalsci.2022.107612
- Numerical performance assessment of a solar greenhouse dryer for the drying of Olive Mill Wastewater, Journal of Thermal Analysis and Calorimetry, Volume 147 (2022) no. 15, p. 8381 | DOI:10.1007/s10973-021-11134-1
- Numerical Study of Natural Convection of Power Law Fluid in a Square Cavity Fitted with a Uniformly Heated T-Fin, Mathematics, Volume 10 (2022) no. 3, p. 342 | DOI:10.3390/math10030342
- MRT-lattice Boltzmann hybrid model for the double diffusive mixed convection with thermodiffusion effect, Natural Computing, Volume 21 (2022) no. 3, pp. 393-405 | DOI:10.1007/s11047-022-09884-4 | Zbl:1530.76071
- Bifurcation analysis of two-dimensional Rayleigh-Bénard convection using deflation, Physical Review E, Volume 105 (2022) no. 5 | DOI:10.1103/physreve.105.055106
- Lattice-Boltzmann modeling of buoyancy-driven turbulent flows, Physics of Fluids, Volume 34 (2022) no. 5 | DOI:10.1063/5.0088409
- Representative Velocity Scale of Rayleigh-Bénard Convection with Shear-Thinning Fluids, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4149414
- Natural convection of hybrid nanofluid flow in the presence of multiple vertical partial magnetic fields in a trapezoidal shaped cavity, The European Physical Journal Special Topics, Volume 231 (2022) no. 13-14, p. 2761 | DOI:10.1140/epjs/s11734-022-00600-y
- Lattice Boltzmann Method-Based Simulations of Pollutant Dispersion and Urban Physics, Atmosphere, Volume 12 (2021) no. 7, p. 833 | DOI:10.3390/atmos12070833
- Computational Performance of Disparate Lattice Boltzmann Scenarios under Unsteady Thermal Convection Flow and Heat Transfer Simulation, Computation, Volume 9 (2021) no. 6, p. 65 | DOI:10.3390/computation9060065
- Numerical Analysis of Natural Convection Driven Flow of a Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure with a U-Shaped Constructal, Energies, Volume 14 (2021) no. 17, p. 5355 | DOI:10.3390/en14175355
- Numerical simulation of Rayleigh-Bénard convection and three-phase Rayleigh-Taylor instability using a modified MPS method, Engineering Analysis with Boundary Elements, Volume 123 (2021), pp. 1-35 | DOI:10.1016/j.enganabound.2020.11.012 | Zbl:1464.76136
- The Zoo of Modes of Convection in Liquids Vibrated along the Direction of the Temperature Gradient, Fluids, Volume 6 (2021) no. 1, p. 30 | DOI:10.3390/fluids6010030
- Time-Periodic Cooling of Rayleigh–Bénard Convection, Fluids, Volume 6 (2021) no. 2, p. 87 | DOI:10.3390/fluids6020087
- Presenting a novel higher-order bounded convection scheme for simulation of multiphase flows and convection heat transfer, International Journal of Heat and Mass Transfer, Volume 172 (2021), p. 121163 | DOI:10.1016/j.ijheatmasstransfer.2021.121163
- Flow topology and bifurcations of buoyancy and mixed convection in an elongated channel with an abrupt section variation, International Journal of Heat and Mass Transfer, Volume 173 (2021), p. 121267 | DOI:10.1016/j.ijheatmasstransfer.2021.121267
- Corrugated surface for polymerase chain reaction (PCR) process: Thermal Rayleigh-Benard instability, International Journal of Thermal Sciences, Volume 170 (2021), p. 107099 | DOI:10.1016/j.ijthermalsci.2021.107099
- Modeling of the thermal performance of piglet house with non-conventional floor system, Journal of Building Engineering, Volume 35 (2021), p. 102071 | DOI:10.1016/j.jobe.2020.102071
- Numerical Simulation of Rayleigh-Bernard Convection Affected by Lower Wall Temperature Variation, New Technologies, Development and Application IV, Volume 233 (2021), p. 823 | DOI:10.1007/978-3-030-75275-0_90
- Bistability bifurcation phenomenon induced by non-Newtonian fluids rheology and thermosolutal convection in Rayleigh–Bénard convection, Physics of Fluids, Volume 33 (2021) no. 7 | DOI:10.1063/5.0051058
- , 2020 6th IEEE International Energy Conference (ENERGYCon) (2020), p. 278 | DOI:10.1109/energycon48941.2020.9236539
- Numerical study of the greenhouse solar drying of olive mill wastewater under different conditions, Advances in Mechanical Engineering, Volume 12 (2020) no. 4, p. 168781401988974 | DOI:10.1177/1687814019889748
- Numerical investigations of the development and suppression of the natural convection flow and heat transfer in the presence of electromagnetic force, International Journal of Heat and Mass Transfer, Volume 157 (2020), p. 119823 | DOI:10.1016/j.ijheatmasstransfer.2020.119823
- Comparison of two and three-dimensional Rayleigh-Bénard convection of power-law fluids in cylindrical and annular enclosures, International Journal of Heat and Mass Transfer, Volume 160 (2020), p. 120211 | DOI:10.1016/j.ijheatmasstransfer.2020.120211
- Rayleigh–Bénard convection of a viscoplastic liquid in a trapezoidal enclosure, International Journal of Mechanical Sciences, Volume 180 (2020), p. 105630 | DOI:10.1016/j.ijmecsci.2020.105630
- Numerical analysis of natural convection between a heated cube and its spherical enclosure, International Journal of Thermal Sciences, Volume 150 (2020), p. 105828 | DOI:10.1016/j.ijthermalsci.2019.02.003
- Thermogravitational and hybrid convection in an obstructed compact cavity, International Journal of Thermal Sciences, Volume 156 (2020), p. 106478 | DOI:10.1016/j.ijthermalsci.2020.106478
- Numerical simulation of Rayleigh-Bénard convection in an inclined enclosure under the influence of magnetic field, Journal of King Saud University - Science, Volume 32 (2020) no. 1, p. 486 | DOI:10.1016/j.jksus.2018.07.010
- Numerical Analysis of Unsteady Natural Convection Flow and Heat Transfer in the Existence of Lorentz Force in Suddenly Expanded Cavity Using Open FOAM, Journal of Thermal Science, Volume 29 (2020) no. 6, p. 1513 | DOI:10.1007/s11630-020-1190-9
- Controlling Rayleigh–Bénard convection via reinforcement learning, Journal of Turbulence, Volume 21 (2020) no. 9-10, p. 585 | DOI:10.1080/14685248.2020.1797059
- Study of thermal comfort: numerical simulation in a closed cavity using the lattice Boltzmann method, SN Applied Sciences, Volume 2 (2020) no. 5 | DOI:10.1007/s42452-020-2600-z
- Development of POD reduced-order model and its closure scheme for 2D Rayleigh-Bénard convection, Applied Mathematical Modelling, Volume 66 (2019), pp. 562-575 | DOI:10.1016/j.apm.2018.09.031 | Zbl:1481.76197
- Rayleigh-Bénard type natural convection heat transfer in two-dimensional geometries, Applied Thermal Engineering, Volume 153 (2019), p. 543 | DOI:10.1016/j.applthermaleng.2019.02.132
- The numerical analysis on the development of Lorentz force and its directional effect on the suppression of buoyancy-driven flow and heat transfer using openfoam, Computers and Fluids, Volume 179 (2019), pp. 476-489 | DOI:10.1016/j.compfluid.2018.11.017 | Zbl:1411.76094
- Isolated convection modes for the anomalous thermoviscous liquid in a plane cell, Fluid Dynamics, Volume 54 (2019) no. 7, pp. 983-990 | DOI:10.1134/s0015462819070097 | Zbl:1434.76118
- Free convection of power-law fluids in enclosures with partially heating from bottom and symmetrical cooling from sides, International Journal of Heat and Mass Transfer, Volume 145 (2019), p. 118782 | DOI:10.1016/j.ijheatmasstransfer.2019.118782
- Numerical investigation of aspect ratio influences on Rayleigh–Bénard convection of Bingham fluids in vertical cylindrical annuli, International Journal of Numerical Methods for Heat Fluid Flow, Volume 29 (2019) no. 1, p. 251 | DOI:10.1108/hff-03-2018-0101
- Rayleigh-Bénard convection of non-Newtonian nanofluids considering Brownian motion and thermophoresis, International Journal of Thermal Sciences, Volume 139 (2019), p. 312 | DOI:10.1016/j.ijthermalsci.2019.02.007
- Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows, Physical Review E, Volume 100 (2019) no. 2 | DOI:10.1103/physreve.100.023304
- Numerical investigation of aspect ratio influences on Rayleigh-Bénard convection of power-law fluids in vertical cylindrical annuli, Thermal Science and Engineering Progress, Volume 9 (2019), p. 185 | DOI:10.1016/j.tsep.2018.10.007
- Entropy Generation due to Combined Natural Convection and Thermal Radiation within a Rectangular Enclosure, Heat Transfer Engineering, Volume 39 (2018) no. 19, p. 1698 | DOI:10.1080/01457632.2017.1384285
- Rayleigh-Bénard convection of Casson fluids, International Journal of Thermal Sciences, Volume 127 (2018), p. 79 | DOI:10.1016/j.ijthermalsci.2018.01.016
- Thermal analysis of a non-homogeneous insulating panel, Journal of Building Physics, Volume 42 (2018) no. 1, p. 16 | DOI:10.1177/1744259117716985
- Convective Flows of Anomalous Thermoviscous Fluid, Mathematical Models and Computer Simulations, Volume 10 (2018) no. 4, p. 529 | DOI:10.1134/s2070048218040087
- Estimation of computational grid for thermal convection simulation with lattice Boltzmann method, Numerical Heat Transfer, Part B: Fundamentals, Volume 73 (2018) no. 3, p. 155 | DOI:10.1080/10407790.2018.1446624
- Lattice Boltzmann Simulation of Natural Convection in a Fractured Petroleum Reservoir Domain: Single-Phase and Multi-Phases Investigations, The Open Petroleum Engineering Journal, Volume 11 (2018) no. 1, p. 48 | DOI:10.2174/1874834101811010048
- Aspect ratio effects in Rayleigh–Bénard convection of Herschel–Bulkley fluids, Engineering Computations, Volume 34 (2017) no. 5, p. 1658 | DOI:10.1108/ec-06-2016-0227
- Computational Fluid Dynamics Simulation of Two-dimensional Natural Convection in a Fractured Porous Medium, Heat Transfer Engineering, Volume 38 (2017) no. 18, p. 1606 | DOI:10.1080/01457632.2016.1255040
- Critical condition for Rayleigh-Bénard convection of Bingham fluids in rectangular enclosures, International Communications in Heat and Mass Transfer, Volume 86 (2017), p. 117 | DOI:10.1016/j.icheatmasstransfer.2017.05.013
- Influences of aspect ratio and wall boundary condition on laminar Rayleigh–Bénard convection of Bingham fluids in rectangular enclosures, International Journal of Numerical Methods for Heat Fluid Flow, Volume 27 (2017) no. 2, p. 310 | DOI:10.1108/hff-09-2015-0366
- Fully decoupled monolithic projection method for natural convection problems, Journal of Computational Physics, Volume 334 (2017), pp. 582-606 | DOI:10.1016/j.jcp.2017.01.022 | Zbl:1375.76178
- Rayleigh–Bénard Power-Law Fluid Convection in Rectangular Enclosures, Journal of Thermophysics and Heat Transfer, Volume 31 (2017) no. 4, p. 805 | DOI:10.2514/1.t5108
- Effect of thermal conductivity ratio on flow features and convective heat transfer, Particulate Science and Technology, Volume 35 (2017) no. 5, p. 565 | DOI:10.1080/02726351.2016.1180337
- Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection, Physical Review E, Volume 96 (2017) no. 1 | DOI:10.1103/physreve.96.013111
- , Volume 1738 (2016), p. 480040 | DOI:10.1063/1.4952276
- Natural convection in shear‐thinning yield stress fluids in a square enclosure, AIChE Journal, Volume 62 (2016) no. 4, p. 1347 | DOI:10.1002/aic.15112
- Regularized lattice Boltzmann model for double-diffusive convection in vertical enclosures with heating and salting from below, Applied Thermal Engineering, Volume 103 (2016), p. 365 | DOI:10.1016/j.applthermaleng.2016.04.080
- Numerical study of heat transfer inside a Keeping Warm System (KWS) incorporating phase change material, Applied Thermal Engineering, Volume 75 (2015), p. 73 | DOI:10.1016/j.applthermaleng.2014.09.035
- Effects of aspect ratio on natural convection of Bingham fluids in rectangular enclosures with differentially heated horizontal walls heated from below, International Journal of Heat and Mass Transfer, Volume 80 (2015), p. 727 | DOI:10.1016/j.ijheatmasstransfer.2014.09.046
- Numerical simulation of MHD flow and heat transfer in a rectangular and smoothly constricted enclosure, International Journal of Heat and Mass Transfer, Volume 83 (2015), p. 441 | DOI:10.1016/j.ijheatmasstransfer.2014.11.091
- Benchmark results for natural and mixed convection heat transfer in a cavity, International Journal of Numerical Methods for Heat Fluid Flow, Volume 25 (2015) no. 5, pp. 998-1029 | DOI:10.1108/hff-02-2014-0036 | Zbl:1356.76195
- Effect of circular cylinder location on three-dimensional natural convection in a cubical enclosure, Journal of Mechanical Science and Technology, Volume 29 (2015) no. 3, p. 1307 | DOI:10.1007/s12206-015-0246-3
- Natural convection in a square enclosure with a circular cylinder according to the bottom wall temperature variation, Journal of Mechanical Science and Technology, Volume 28 (2014) no. 12, p. 5013 | DOI:10.1007/s12206-014-1123-1
- Numerical nonlinear analysis of subcritical Rayleigh-Bénard convection in a horizontal confined enclosure filled with non-Newtonian fluids, Physics of Fluids, Volume 26 (2014) no. 7 | DOI:10.1063/1.4890829
- A Coupled Prediction Scheme for Solving the Navier–Stokes and Convection-Diffusion Equations, SIAM Journal on Numerical Analysis, Volume 52 (2014) no. 5, p. 2415 | DOI:10.1137/130942516
- Incompressible smoothed particle hydrodynamics modeling of thermal convection, Interaction and multiscale mechanics, Volume 6 (2013) no. 2, p. 211 | DOI:10.12989/imm.2013.6.2.211
- Effects of thermal boundary conditions on natural convection in a square enclosure with an inner circular cylinder locally heated from the bottom wall, International Journal of Heat and Mass Transfer, Volume 65 (2013), p. 435 | DOI:10.1016/j.ijheatmasstransfer.2013.06.031
- Natural Convection of Water-Based Nanofluids in a Square Enclosure with Non-Uniform Heating of the Bottom Wall, Journal of Modern Physics, Volume 04 (2013) no. 02, p. 147 | DOI:10.4236/jmp.2013.42021
- Non-incremental transient solution of the Rayleigh–Bénard convection model by using the PGD, Journal of Non-Newtonian Fluid Mechanics, Volume 200 (2013), p. 65 | DOI:10.1016/j.jnnfm.2012.11.007
- Effect of Variation of Heated Bottom Wall Area on Natural Convection in Square Enclosure with Inner Circular Cylinder, Transactions of the Korean Society of Mechanical Engineers B, Volume 37 (2013) no. 11, p. 991 | DOI:10.3795/ksme-b.2013.37.11.991
- Rayleigh-Bénard Convection of Non-Newtonian Power-Law Fluids with Temperature-Dependent Viscosity, ISRN Thermodynamics, Volume 2012 (2012), p. 1 | DOI:10.5402/2012/614712
- Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure, Journal of Non-Newtonian Fluid Mechanics, Volume 171-172 (2012), p. 83 | DOI:10.1016/j.jnnfm.2012.01.006
Cité par 109 documents. Sources : Crossref, zbMATH
Commentaires - Politique