Nous nous intéressons à la convergence vers sa moyenne spatiale ergodique de la moyenne temporelle d'une observable d'un flow hamiltonien à un degré et demi de liberté avec espace des phases mixte. L'analyse est faite au travers de l'évolution de la distribution des moyennes en temps fini d'un ensemble de conditions initiales sur la même composante ergodique. Un exposant caractérisant la vitesse de convergence est défini. Les résultats indiquent que pour le système considéré la convergence évolue en
We consider the problem of convergence towards spatial ergodic average of the time average of an observable defined for a one and a half degree of freedom Hamiltonian flow with mixed phase space. The analysis is performed by analysing the evolution of the distribution of finite-time averages. An exponent characterising the “speed of convergence” is defined. Results indicate that for the considered mixed case, the rate of convergence goes as
Accepté le :
Publié le :
Keywords: Dynamical systems, Hamiltonian chaos, Anomalous transport
Xavier Leoncini 1 ; Cristel Chandre 1 ; Ouerdia Ourrad 2
@article{CRMECA_2008__336_6_530_0, author = {Xavier Leoncini and Cristel Chandre and Ouerdia Ourrad}, title = {Ergodicit\'e, collage et transport anomal}, journal = {Comptes Rendus. M\'ecanique}, pages = {530--535}, publisher = {Elsevier}, volume = {336}, number = {6}, year = {2008}, doi = {10.1016/j.crme.2008.02.006}, language = {fr}, }
Xavier Leoncini; Cristel Chandre; Ouerdia Ourrad. Ergodicité, collage et transport anomal. Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 530-535. doi : 10.1016/j.crme.2008.02.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.02.006/
[1] A short Ergodic Theory Refresher, NATO Science Series, vol. 182, Kluwer Academic Publishers, Dordrecht, 2005 (pp. 1–14)
[2] J.-R. Chazottes, Entropie relative, dynamique symbolique et turbulence, PhD thesis, Université de Provence, 1999
[3] The accuracy of symplectic integrators, Nonlinearity, Volume 5 (1992), p. 541
[4] Chaotic advection near a 3-vortex collapse, Phys. Rev. E, Volume 63 (2001) no. 3, p. 036224
[5] Chaos, fractional kinetics, and anomalous transport, Phys. Rep., Volume 371 (2002), p. 641
[6] Stochastic instability of trapped particles and conditions of applicability of the quasi-linear approximation, Soviet Phys. JETP, Volume 25 (1968), p. 851
[7] Stochasticity in classical hamiltonian systems: universal aspects, Phys. Rep., Volume 121 (1985), pp. 165-261
[8] Renormalization-group analysis for the transition to chaos in hamiltonian systems, Phys. Rep., Volume 365 (2002), pp. 1-64
[9] Chaotic jets, Commun. Nonlinear Sci. Numer. Simulation, Volume 8 (2003), pp. 265-271
[10] Space–time complexity in hamiltonian dynamics, Chaos, Volume 13 (2003) no. 2, p. 519
- Sticky islands in stochastic webs and anomalous chaotic cross-field particle transport by E×B electron drift instability, Chaos, Solitons Fractals, Volume 145 (2021), p. 110810 | DOI:10.1016/j.chaos.2021.110810
- Detecting Regularity with Complexity Functions, The Many Facets of Complexity Science (2021), p. 13 | DOI:10.1007/978-981-16-2853-5_2
- Cross-field chaotic transport of electrons by E × B electron drift instability in Hall thruster, Physics of Plasmas, Volume 27 (2020) no. 3 | DOI:10.1063/1.5134148
- Collapse of hierarchical phase space and mixing rates in Hamiltonian systems, Physica A: Statistical Mechanics and its Applications, Volume 530 (2019), p. 121568 | DOI:10.1016/j.physa.2019.121568
- Anomalous transport and observable average in the standard map, Chaos, Solitons Fractals, Volume 78 (2015), p. 277 | DOI:10.1016/j.chaos.2015.08.007
- Strong anomalous diffusion of the phase of a chaotic pendulum, EPL (Europhysics Letters), Volume 111 (2015) no. 1, p. 10002 | DOI:10.1209/0295-5075/111/10002
- Non-commutative Tomography: Applications to Data Analysis, Discontinuity and Complexity in Nonlinear Physical Systems, Volume 6 (2014), p. 215 | DOI:10.1007/978-3-319-01411-1_12
- Hamiltonian Chaos and Anomalous Transport in Two Dimensional Flows, Hamiltonian Chaos Beyond the KAM Theory, Volume 0 (2010), p. 143 | DOI:10.1007/978-3-642-12718-2_3
Cité par 8 documents. Sources : Crossref
Commentaires - Politique