[Sur un système de réaction–diffusion avec une frontière libre de réaction pénétrant la micro-structure]
We discuss the fast-reaction limit of a two-scale reaction–diffusion model. We point out that if the reaction constant a explodes to infinity, then a two-scale PDE system with free boundary at the micro cell is obtained. The aim of this note is to answer the question: Can the same two-scale free-boundary problem be obtained if we first pass to the fast-reaction limit
On considère un modèle de réaction-diffusion à deux échelles, dont la micro-structure contient une réaction rapide. Lorsque la constante de réaction a explose vers l'infini, le modèle à deux échelles converge vers un modèle à frontière libre concentrée dans la micro-structure. Le but de cette Note est de montrer qu'en échangeant la limite d'homogénéisation
Accepté le :
Publié le :
Mots-clés : Milieux poreux, Modèle à deux échelles, Homogénéisation, Réaction rapide, Frontière libre
Sebastian A. Meier 1 ; Adrian Muntean 2
@article{CRMECA_2008__336_6_481_0, author = {Sebastian A. Meier and Adrian Muntean}, title = {A two-scale reaction{\textendash}diffusion system with micro-cell reaction concentrated on a free boundary}, journal = {Comptes Rendus. M\'ecanique}, pages = {481--486}, publisher = {Elsevier}, volume = {336}, number = {6}, year = {2008}, doi = {10.1016/j.crme.2008.02.012}, language = {en}, }
TY - JOUR AU - Sebastian A. Meier AU - Adrian Muntean TI - A two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary JO - Comptes Rendus. Mécanique PY - 2008 SP - 481 EP - 486 VL - 336 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2008.02.012 LA - en ID - CRMECA_2008__336_6_481_0 ER -
Sebastian A. Meier; Adrian Muntean. A two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary. Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 481-486. doi : 10.1016/j.crme.2008.02.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.02.012/
[1] Far-from-Equilibrium Dynamics, Translations of Mathematical Monographs, vol. 209, Amer. Math. Soc., Providence, RI, 2002
[2] S.A. Meier, M.A. Peter, A. Muntean, M. Böhm, J. Kropp, A two-scale approach to concrete carbonation, in: Proc. Int. RILEM Workshop on Integral Service Life Modeling of Concrete Structures, 2007, Guimares, Portugal, pp. 3–10
[3] T.L. van Noorden, I.S. Pop, A Stefan problem modelling crystal dissolution and precipitation, IMA J. Appl. Math., in press
[4] A quasilinear parabolic system arising in modeling of catalytic reactors, J. Differential Equations, Volume 70 (1987), pp. 167-196
[5] Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Engrg. Sci., Volume 34 (1996) no. 3, pp. 313-338
[6] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990) no. 4, pp. 823-836
[7] Reactive transport through an array of cells with semi-permeable membranes, RAIRO Modél. Math. Anal. Numér., Volume 8 (1994) no. 1, pp. 59-94
[8] Limiting behaviour of some problems in diffusive penetration, Rend. Mat. Ser. VII, Volume 10 (1990), pp. 39-57
[9] The fast reaction limit for a reaction–diffusion system, J. Math. Anal. Appl., Volume 199 (1996), pp. 349-373
[10] A. Muntean, S.A. Meier, Existence of weak solutions to a two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary, in preparation
[11] An Introduction to Homogenization, Oxford University Press, 1999
[12] Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980
[13] T. van Noorden, Crystal precipitation and dissolution in a thin strip, CASA report 07-30, Eindhoven University of Technology, 2007
[14] A two-scale method for the computation of solid–liquid phase transitions with dendritic microstructure, J. Comput. Phys., Volume 178 (2002), pp. 58-80
[15] Homogenisation of a chemical degradation mechanism inducing an evolving microstructure, C. R. Mecanique, Volume 335 (2007) no. 11, pp. 679-684
[16] S.A. Meier, Two-scale models of reactive transport in porous media involving microstructural changes, PhD thesis, University of Bremen, Germany, in preparation
- Multiscale Carbonation Reactions: Status of Things and Two Modeling Exercises Related to Cultural Heritage, Mathematical Modeling in Cultural Heritage, Volume 55 (2023), p. 175 | DOI:10.1007/978-981-99-3679-3_11
- A p‐adaptive, implicit‐explicit mixed finite element method for diffusion‐reaction problems, International Journal for Numerical Methods in Engineering, Volume 123 (2022) no. 14, p. 3237 | DOI:10.1002/nme.6967
- Asymptotics of diffusion-limited fast reactions, Quarterly of Applied Mathematics, Volume 76 (2017) no. 2, p. 199 | DOI:10.1090/qam/1496
- Primal-mixed formulations for reaction–diffusion systems on deforming domains, Journal of Computational Physics, Volume 299 (2015), p. 320 | DOI:10.1016/j.jcp.2015.07.018
- Large‐time behavior of a two‐scale semilinear reaction–diffusion system for concrete sulfatation, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 7, p. 1451 | DOI:10.1002/mma.3161
- Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, Volume 15 (2014), p. 326 | DOI:10.1016/j.nonrwa.2012.01.019
- Single and Two-Scale Sharp-Interface Models for Concrete Carbonation—Asymptotics and Numerical Approximation, Multiscale Modeling Simulation, Volume 10 (2012) no. 3, p. 874 | DOI:10.1137/110859701
- Homogenisation of a locally periodic medium with areas of low and high diffusivity, European Journal of Applied Mathematics, Volume 22 (2011) no. 5, p. 493 | DOI:10.1017/s0956792511000209
- Homogenization of a reaction–diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains, Journal of Engineering Mathematics, Volume 69 (2011) no. 2-3, p. 261 | DOI:10.1007/s10665-010-9396-6
- A multiscale Galerkin approach for a class of nonlinear coupled reaction–diffusion systems in complex media, Journal of Mathematical Analysis and Applications, Volume 371 (2010) no. 2, p. 705 | DOI:10.1016/j.jmaa.2010.05.056
Cité par 10 documents. Sources : Crossref
Commentaires - Politique