We discuss the fast-reaction limit of a two-scale reaction–diffusion model. We point out that if the reaction constant a explodes to infinity, then a two-scale PDE system with free boundary at the micro cell is obtained. The aim of this note is to answer the question: Can the same two-scale free-boundary problem be obtained if we first pass to the fast-reaction limit and then take the homogenisation limit that is behind the derivation of the two-scale model? Here ε is the width of a thin two-dimensional strip. Using the method of asymptotic expansions, we show that it does not matter whether we first take and then , or vice-versa. Finally, we illustrate numerically the solution behaviour of the two-scale model in case of a fast reaction.
On considère un modèle de réaction-diffusion à deux échelles, dont la micro-structure contient une réaction rapide. Lorsque la constante de réaction a explose vers l'infini, le modèle à deux échelles converge vers un modèle à frontière libre concentrée dans la micro-structure. Le but de cette Note est de montrer qu'en échangeant la limite d'homogénéisation avec celle de la réaction rapide , on ne change pas le modèle limite. Des résultats numériques sont également presentés.
Accepted:
Published online:
Mots-clés : Milieux poreux, Modèle à deux échelles, Homogénéisation, Réaction rapide, Frontière libre
Sebastian A. Meier 1; Adrian Muntean 2
@article{CRMECA_2008__336_6_481_0, author = {Sebastian A. Meier and Adrian Muntean}, title = {A two-scale reaction{\textendash}diffusion system with micro-cell reaction concentrated on a free boundary}, journal = {Comptes Rendus. M\'ecanique}, pages = {481--486}, publisher = {Elsevier}, volume = {336}, number = {6}, year = {2008}, doi = {10.1016/j.crme.2008.02.012}, language = {en}, }
TY - JOUR AU - Sebastian A. Meier AU - Adrian Muntean TI - A two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary JO - Comptes Rendus. Mécanique PY - 2008 SP - 481 EP - 486 VL - 336 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2008.02.012 LA - en ID - CRMECA_2008__336_6_481_0 ER -
Sebastian A. Meier; Adrian Muntean. A two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary. Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 481-486. doi : 10.1016/j.crme.2008.02.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.02.012/
[1] Far-from-Equilibrium Dynamics, Translations of Mathematical Monographs, vol. 209, Amer. Math. Soc., Providence, RI, 2002
[2] S.A. Meier, M.A. Peter, A. Muntean, M. Böhm, J. Kropp, A two-scale approach to concrete carbonation, in: Proc. Int. RILEM Workshop on Integral Service Life Modeling of Concrete Structures, 2007, Guimares, Portugal, pp. 3–10
[3] T.L. van Noorden, I.S. Pop, A Stefan problem modelling crystal dissolution and precipitation, IMA J. Appl. Math., in press
[4] A quasilinear parabolic system arising in modeling of catalytic reactors, J. Differential Equations, Volume 70 (1987), pp. 167-196
[5] Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Engrg. Sci., Volume 34 (1996) no. 3, pp. 313-338
[6] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990) no. 4, pp. 823-836
[7] Reactive transport through an array of cells with semi-permeable membranes, RAIRO Modél. Math. Anal. Numér., Volume 8 (1994) no. 1, pp. 59-94
[8] Limiting behaviour of some problems in diffusive penetration, Rend. Mat. Ser. VII, Volume 10 (1990), pp. 39-57
[9] The fast reaction limit for a reaction–diffusion system, J. Math. Anal. Appl., Volume 199 (1996), pp. 349-373
[10] A. Muntean, S.A. Meier, Existence of weak solutions to a two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary, in preparation
[11] An Introduction to Homogenization, Oxford University Press, 1999
[12] Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980
[13] T. van Noorden, Crystal precipitation and dissolution in a thin strip, CASA report 07-30, Eindhoven University of Technology, 2007
[14] A two-scale method for the computation of solid–liquid phase transitions with dendritic microstructure, J. Comput. Phys., Volume 178 (2002), pp. 58-80
[15] Homogenisation of a chemical degradation mechanism inducing an evolving microstructure, C. R. Mecanique, Volume 335 (2007) no. 11, pp. 679-684
[16] S.A. Meier, Two-scale models of reactive transport in porous media involving microstructural changes, PhD thesis, University of Bremen, Germany, in preparation
Cited by Sources:
Comments - Policy