Comptes Rendus
Elastic modulus of a colloidal suspension of rigid spheres at rest
Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 512-517.

By modeling a colloidal suspension at rest as a solid, a new expression for the linear elastic modulus is obtained. This estimate is valid for a yield stress colloidal suspension submitted to a small strain. Interestingly, it is also possible to construct an hypothesis allowing one to recover the high-frequency modulus classically found by means of a classical ‘fluid approach’. However, in most of the situations, the moduli obtained by the two approaches are different.

En modélisant une suspension colloïdale au repos comme un solide, on obtient une nouvelle expression pour le module d'élasticité linéaire. Cette expression permet d'estimer le module d'une suspension colloïdale possédant un seuil d'écoulement soumise à une déformation infinitésimale. On montre également que sous certaines hypothèses, cette approche permet de retrouver l'expression du module élastique à grande fréquence obtenu par une approche classique de type fluide.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.03.001
Keywords: Rheology, Colloidal suspension, Elastical modulus
Mot clés : Rhéologie, Suspension colloïdale, Module d'élasticité

Laurentiu Pasol 1; Xavier Chateau 2

1 Laboratoire physique thermique-ESPCI, 10, rue Vauquelin, 75231 Paris cedex 05, France
2 Institut Navier, Laboratoire des matériaux et des structures du génie civil, 2, allée Kepler, 77420 Champs-sur-Marne, France
@article{CRMECA_2008__336_6_512_0,
     author = {Laurentiu Pasol and Xavier Chateau},
     title = {Elastic modulus of a colloidal suspension of rigid spheres at rest},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {512--517},
     publisher = {Elsevier},
     volume = {336},
     number = {6},
     year = {2008},
     doi = {10.1016/j.crme.2008.03.001},
     language = {en},
}
TY  - JOUR
AU  - Laurentiu Pasol
AU  - Xavier Chateau
TI  - Elastic modulus of a colloidal suspension of rigid spheres at rest
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 512
EP  - 517
VL  - 336
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2008.03.001
LA  - en
ID  - CRMECA_2008__336_6_512_0
ER  - 
%0 Journal Article
%A Laurentiu Pasol
%A Xavier Chateau
%T Elastic modulus of a colloidal suspension of rigid spheres at rest
%J Comptes Rendus. Mécanique
%D 2008
%P 512-517
%V 336
%N 6
%I Elsevier
%R 10.1016/j.crme.2008.03.001
%G en
%F CRMECA_2008__336_6_512_0
Laurentiu Pasol; Xavier Chateau. Elastic modulus of a colloidal suspension of rigid spheres at rest. Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 512-517. doi : 10.1016/j.crme.2008.03.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.03.001/

[1] R. Zwanzig; R.D. Mountain High-frequency elastic moduli of simple fluids, J. Chem. Phys., Volume 43 (1965), pp. 4464-4471

[2] N.J. Wagner The high-frequency shear modulus of colloidal suspensions and the effects of hydrodynamic interactions, J. Colloid Interface Sci., Volume 161 (1993), pp. 169-181

[3] R.A. Lionberger; W.B. Russel High frequency modulus of hard sphere colloids, J. Rheology, Volume 38 (1994), pp. 1885-1908

[4] J. Brady The rheological behavior of concentrated colloidal dispersions, J. Chem. Phys., Volume 99 (1993), pp. 567-581

[5] J. Bergenholtz; N. Willenbacher; N.J. Wagner; M.J. Morrison van den Ende Colloidal charge determination in concentrated liquid dispersions using torsional resonance oscillation, J. Colloid Interface Sci., Volume 202 (1998), pp. 430-440

[6] G. Batchelor The stress system in a suspension of force-free particles, J. Fluid Mech., Volume 41 (1970), pp. 545-570

[7] G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., Volume 83 (1977), pp. 97-117

[8] W.B. Russel; D.A. Saville; W.R. Schowalter Colloidal Dispersions, Cambridge University Press, 1995

[9] X. Chateau; P. Moucheront; O. Pitois Micromechanics of unsaturated granular media, ASCE J. Eng. Mech., Volume 128 (2002) no. 8, pp. 856-863

[10] A. Zaoui Continuum micromechanics: Survey, ASCE J. Eng. Mech., Volume 128 (2002) no. 8, pp. 808-816

[11] J.P. Hansen; I.R. McDonald Theory of Simple Liquids, Academic Press, London, 1986

[12] P. Germain Cours de Mécanique des Milieux Continus, Masson, Paris, 1973

[13] J. Salençon Handbook of Continuum Mechanics. General Concepts, Thermoelasticity, Springer, Berlin, 2001

Cited by Sources:

Comments - Policy