By modeling a colloidal suspension at rest as a solid, a new expression for the linear elastic modulus is obtained. This estimate is valid for a yield stress colloidal suspension submitted to a small strain. Interestingly, it is also possible to construct an hypothesis allowing one to recover the high-frequency modulus classically found by means of a classical ‘fluid approach’. However, in most of the situations, the moduli obtained by the two approaches are different.
En modélisant une suspension colloïdale au repos comme un solide, on obtient une nouvelle expression pour le module d'élasticité linéaire. Cette expression permet d'estimer le module d'une suspension colloïdale possédant un seuil d'écoulement soumise à une déformation infinitésimale. On montre également que sous certaines hypothèses, cette approche permet de retrouver l'expression du module élastique à grande fréquence obtenu par une approche classique de type fluide.
Accepted:
Published online:
Mots-clés : Rhéologie, Suspension colloïdale, Module d'élasticité
Laurentiu Pasol 1; Xavier Chateau 2
@article{CRMECA_2008__336_6_512_0, author = {Laurentiu Pasol and Xavier Chateau}, title = {Elastic modulus of a colloidal suspension of rigid spheres at rest}, journal = {Comptes Rendus. M\'ecanique}, pages = {512--517}, publisher = {Elsevier}, volume = {336}, number = {6}, year = {2008}, doi = {10.1016/j.crme.2008.03.001}, language = {en}, }
Laurentiu Pasol; Xavier Chateau. Elastic modulus of a colloidal suspension of rigid spheres at rest. Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 512-517. doi : 10.1016/j.crme.2008.03.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.03.001/
[1] High-frequency elastic moduli of simple fluids, J. Chem. Phys., Volume 43 (1965), pp. 4464-4471
[2] The high-frequency shear modulus of colloidal suspensions and the effects of hydrodynamic interactions, J. Colloid Interface Sci., Volume 161 (1993), pp. 169-181
[3] High frequency modulus of hard sphere colloids, J. Rheology, Volume 38 (1994), pp. 1885-1908
[4] The rheological behavior of concentrated colloidal dispersions, J. Chem. Phys., Volume 99 (1993), pp. 567-581
[5] Colloidal charge determination in concentrated liquid dispersions using torsional resonance oscillation, J. Colloid Interface Sci., Volume 202 (1998), pp. 430-440
[6] The stress system in a suspension of force-free particles, J. Fluid Mech., Volume 41 (1970), pp. 545-570
[7] The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., Volume 83 (1977), pp. 97-117
[8] Colloidal Dispersions, Cambridge University Press, 1995
[9] Micromechanics of unsaturated granular media, ASCE J. Eng. Mech., Volume 128 (2002) no. 8, pp. 856-863
[10] Continuum micromechanics: Survey, ASCE J. Eng. Mech., Volume 128 (2002) no. 8, pp. 808-816
[11] Theory of Simple Liquids, Academic Press, London, 1986
[12] Cours de Mécanique des Milieux Continus, Masson, Paris, 1973
[13] Handbook of Continuum Mechanics. General Concepts, Thermoelasticity, Springer, Berlin, 2001
Cited by Sources:
Comments - Policy