Comptes Rendus
Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach
[Chaos polynomial creux et éléments finis stochastiques adaptatifs : une approche par régression]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 518-523.

Dans cette communication, on propose un algorithme permettant de construire une représentation par chaos polynomial creux de la réponse d'un modèle mécanique dont les paramètres d'entrée sont aléatoires. L'algorithme construit de façon adaptative une représentation creuse en détectant automatiquement les termes importants et en supprimant ceux qui sont négligeables. A chaque étape, le calcul des coefficients s'effectue par minimisation au sens des moindres carrés (méthode non-intrusive dite de régression). L'algorithme est déroulé pas à pas sur un modèle polynomial, puis appliqué à l'étude de la fiabilité d'un treillis élastique.

A method is proposed to build a sparse polynomial chaos (PC) expansion of a mechanical model whose input parameters are random. In this respect, an adaptive algorithm is described for automatically detecting the significant coefficients of the PC expansion. The latter can thus be computed by means of a relatively small number of possibly costly model evaluations, using a non-intrusive regression scheme (also known as stochastic collocation). The method is illustrated by a simple polynomial model, as well as the example of the deflection of a truss structure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2008.02.013
Keywords: Solids and structures, Adaptive stochastic finite elements, Sparse polynomial chaos, Stochastic collocation, Regression, Structural reliability
Mots-clés : Solides et structures, Eléments finis stochastiques adaptatifs, Chaos polynomial creux, Collocation stochastique, Régression, Fiabilité

Géraud Blatman 1, 2 ; Bruno Sudret 2

1 IFMA-LaMI, Campus des Cézeaux, BP 265, 63175 Aubière cedex, France
2 EDF R&D, Département matériaux et mécanique des composants, site des Renardières, 77250 Moret-sur-Loing cedex, France
@article{CRMECA_2008__336_6_518_0,
     author = {G\'eraud Blatman and Bruno Sudret},
     title = {Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {518--523},
     publisher = {Elsevier},
     volume = {336},
     number = {6},
     year = {2008},
     doi = {10.1016/j.crme.2008.02.013},
     language = {en},
}
TY  - JOUR
AU  - Géraud Blatman
AU  - Bruno Sudret
TI  - Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 518
EP  - 523
VL  - 336
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2008.02.013
LA  - en
ID  - CRMECA_2008__336_6_518_0
ER  - 
%0 Journal Article
%A Géraud Blatman
%A Bruno Sudret
%T Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach
%J Comptes Rendus. Mécanique
%D 2008
%P 518-523
%V 336
%N 6
%I Elsevier
%R 10.1016/j.crme.2008.02.013
%G en
%F CRMECA_2008__336_6_518_0
Géraud Blatman; Bruno Sudret. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. Comptes Rendus. Mécanique, Volume 336 (2008) no. 6, pp. 518-523. doi : 10.1016/j.crme.2008.02.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.02.013/

[1] R. Ghanem; P. Spanos Stochastic Finite Elements: A Spectral Approach, Courier Dover Publications, 2003

[2] C. Soize; R. Ghanem Physical systems with random uncertainties: chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., Volume 26 (2004) no. 2, pp. 395-410

[3] D. Xiu; G.E. Karniadakis A new stochastic approach to transient heat conduction modeling with uncertainty, Int. J. Heat Mass Transfer, Volume 46 (2003), pp. 4681-4693

[4] O.P. Le Maître; O.M. Knio; H.N. Najm; R.G. Ghanem A stochastic projection method for fluid flow, J. Comput. Phys., Volume 173 (2001), pp. 481-511

[5] O.M. Knio; O.P. Le Maître Uncertainty propagation in CFD using polynomial chaos decomposition, Fluid Dyn. Res., Volume 38 (2006) no. 9, pp. 616-640

[6] B. Sudret; A. Der Kiureghian Comparison of finite element reliability methods, Prob. Eng. Mech., Volume 17 (2002), pp. 337-348

[7] G. Blatman; B. Sudret; M. Berveiller Quasi-random numbers in stochastic finite element analysis, Mécanique & Industries, Volume 8 (2007), pp. 289-297

[8] D.M. Ghiocel; R.G. Ghanem Stochastic finite element analysis of seismic soil–structure interaction, J. Eng. Mech. (ASCE), Volume 128 (2002), pp. 66-77

[9] M. Berveiller; B. Sudret; M. Lemaire Stochastic finite element: a non-intrusive approach by regression, Rev. Européenne Mécanique Numérique, Volume 15 (2006) no. 1–3, pp. 81-92

[10] A. Nouy A generalized spectral decomposition technique to solve stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., Volume 196 (2007) no. 45–48, pp. 4521-4537

[11] S.K. Choi; R.V. Grandhi; R.A. Canfield Structural reliability under non-Gaussian stochastic behavior, Computers & Structures, Volume 82 (2004), pp. 1113-1121

[12] B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – Contributions to structural reliability and stochastic spectral methods, Habilitation à diriger des recherches, Université Blaise-Pascal, Clermont-Ferrand, France, 2007

[13] B. Sudret Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Sys. Safety, Volume 93 (2008), pp. 964-979

[14] M.D. McKay; R.J. Beckman; W.J. Conover A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, Volume 2 (1979), pp. 239-245

  • Bingran Wang; Nicholas C. Orndorff; Mark Sperry; John T. Hwang Extension of graph-accelerated non-intrusive polynomial chaos to high-dimensional uncertainty quantification through the active subspace method, Aerospace Science and Technology, Volume 160 (2025), p. 110074 | DOI:10.1016/j.ast.2025.110074
  • Yuming Ba; Qiuqi Li; Zehua Li; Lingling Ma An ensemble-based efficient iterative method for uncertainty quantification of partial differential equations with random inputs, Computers Mathematics with Applications, Volume 182 (2025), pp. 256-274 | DOI:10.1016/j.camwa.2025.02.001 | Zbl:8010429
  • Najib Zemed; Toufik Cherradi; Azzeddine Bouyahyaoui; Kaoutar Mouzoun Enhanced Active Learning for Structural Reliability Analysis: An Ensemble SVR Metamodel‐Monte Carlo Approach, Quality and Reliability Engineering International (2025) | DOI:10.1002/qre.3747
  • Ye-Yao Weng; Teng Liu; Xuan-Yi Zhang; Yan-Gang Zhao Probability density estimation of polynomial chaos and its application in structural reliability analysis, Reliability Engineering System Safety, Volume 253 (2025), p. 110537 | DOI:10.1016/j.ress.2024.110537
  • Yan-Gang Zhao; Chang-Xing Zou; Xuan-Yi Zhang; Ye-Yao Weng An augmented integral method for probability distribution evaluation of performance functions, Structural Safety, Volume 112 (2025), p. 102544 | DOI:10.1016/j.strusafe.2024.102544
  • Zheng Li; Ze-Ming Wu; Xiao-Chun Li, 2024 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT) (2024), p. 1 | DOI:10.1109/rfit60557.2024.10812522
  • Bingran Wang; Mark Sperry; Victor E. Gandarillas; John T. Hwang Accelerating model evaluations in uncertainty propagation on tensor grids using computational graph transformations, Aerospace Science and Technology, Volume 145 (2024), p. 108843 | DOI:10.1016/j.ast.2023.108843
  • Lin Chen; Hanyan Huang Global sensitivity analysis for multivariate outputs using generalized RBF-PCE metamodel enhanced by variance-based sequential sampling, Applied Mathematical Modelling, Volume 126 (2024), p. 381 | DOI:10.1016/j.apm.2023.10.047
  • Christian Soize; Roger Ghanem Probabilistic-learning-based stochastic surrogate model from small incomplete datasets for nonlinear dynamical systems, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 25 (Id/No 116498) | DOI:10.1016/j.cma.2023.116498 | Zbl:1539.74534
  • Yangtian Li; Yangjun Luo; Zheng Zhong An active sparse polynomial chaos expansion approach based on sequential relevance vector machine, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 20 (Id/No 116554) | DOI:10.1016/j.cma.2023.116554 | Zbl:1539.65019
  • Wenbo Zhou; Liujing Zhang; Aleksey Sheshukov; Jingfeng Wang; Modi Zhu; Khachik Sargsyan; Donghui Xu; Desheng Liu; Tianqi Zhang; Valeriy Mazepa; Alexandr Sokolov; Victor Valdayskikh; Valeriy Ivanov Ground Heat Flux Reconstruction Using Bayesian Uncertainty Quantification Machinery and Surrogate Modeling, Earth and Space Science, Volume 11 (2024) no. 3 | DOI:10.1029/2023ea003435
  • Houbiao Ma; Yahui Zhang Stochastic response analysis of 3D vibro-acoustic systems with geometrical uncertainties based on the extended finite element method, International Journal for Numerical Methods in Engineering, Volume 125 (2024) no. 3, p. 28 (Id/No e7382) | DOI:10.1002/nme.7382 | Zbl:7878895
  • Christian Soize; Quy-Dong To Polynomial-chaos-based conditional statistics for probabilistic learning with heterogeneous data applied to atomic collisions of helium on graphite substrate, Journal of Computational Physics, Volume 496 (2024), p. 20 (Id/No 112582) | DOI:10.1016/j.jcp.2023.112582 | Zbl:7807989
  • Paul Novello; Gaël Poëtte; David Lugato; Simon Peluchon; Pietro Marco Congedo Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees), Journal of Computational Physics, Volume 498 (2024), p. 24 (Id/No 112700) | DOI:10.1016/j.jcp.2023.112700 | Zbl:7797670
  • Jan Sýkora; Jan Havelka Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography, Journal of Computational and Applied Mathematics, Volume 436 (2024), p. 11 (Id/No 115406) | DOI:10.1016/j.cam.2023.115406 | Zbl:1528.94010
  • Kyriakos D. Kantarakias; George Papadakis Uncertainty quantification of time-average quantities of chaotic systems using sensitivity-enhanced polynomial chaos expansion, Physical Review E, Volume 109 (2024) no. 4 | DOI:10.1103/physreve.109.044208
  • Houbiao Ma; Guohao Sui; Ali Tian; Yue Kong; Maolong Xia Analysis of two-dimensional stochastic acoustic radiation problems with immersed media interface uncertainties, Physics of Fluids, Volume 36 (2024) no. 9 | DOI:10.1063/5.0221953
  • Guang Yang; Houxin She; Mianmian Wu; Chunhu Mi; Chaoping Zang; Chaofeng Li Multi-source uncertainty propagation and sensitivity analysis of turbine blades with underplatform dampers, Probabilistic Engineering Mechanics, Volume 76 (2024), p. 103635 | DOI:10.1016/j.probengmech.2024.103635
  • Xiukai Yuan; Yunfei Shu; Jingqiang Chen; Yiwei Dong; Hongshuang Li Fully decoupling approach based on weighted subset simulation and combination for reliability-based design optimization, Structures, Volume 65 (2024), p. 106662 | DOI:10.1016/j.istruc.2024.106662
  • Lin Chen; Hanyan Huang; Shenshen Liu, 2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT) (2023), p. 529 | DOI:10.1109/ainit59027.2023.10212559
  • Bingran Wang; Nicholas C. Orndorff; Mark Sperry; John T. Hwang, AIAA AVIATION 2023 Forum (2023) | DOI:10.2514/6.2023-4264
  • Xiang Guo; Yanfei Jin Novel algorithm for flexible multibody systems with hybrid uncertainties, Applied Mathematical Modelling, Volume 113 (2023), pp. 573-595 | DOI:10.1016/j.apm.2022.09.029 | Zbl:1505.65226
  • Alessio Mentani; Laura Govoni; Franck Bourrier; Riccardo Zabatta Metamodelling of the load-displacement response of offshore piles in sand, Computers and Geotechnics, Volume 159 (2023), p. 105490 | DOI:10.1016/j.compgeo.2023.105490
  • Zhibin Sun; Guoxian Huang; Yining Hu; Daniel Dias; Jian Ji Reliability analysis of pile-reinforced slopes in width-limited failure mode considering three-dimensional spatial variation of soil strength, Computers and Geotechnics, Volume 161 (2023), p. 105528 | DOI:10.1016/j.compgeo.2023.105528
  • Jeahan Jung; Minseok Choi Data-Driven Method to Quantify Correlated Uncertainties, IEEE Access, Volume 11 (2023), p. 50605 | DOI:10.1109/access.2023.3277521
  • Zongfan Wang; Liqun Wang; Xiuye Wang; Qinqin Sun; Guolai Yang Propagation algorithm for hybrid uncertainty parameters based on polynomial chaos expansion, International Journal for Numerical Methods in Engineering, Volume 124 (2023) no. 19, pp. 4203-4223 | DOI:10.1002/nme.7307 | Zbl:7772309
  • Nora Lüthen; Olivier Roustant; Fabrice Gamboa; Bertrand Iooss; Stefano Marelli; Bruno Sudret GLOBAL SENSITIVITY ANALYSIS USING DERIVATIVE-BASED SPARSE POINCARÉ CHAOS EXPANSIONS, International Journal for Uncertainty Quantification, Volume 13 (2023) no. 6, p. 57 | DOI:10.1615/int.j.uncertaintyquantification.2023043593
  • Gaël Poëtte Multigroup-like MC resolution of generalised polynomial chaos reduced models of the uncertain linear Boltzmann equation (+discussion on hybrid intrusive/non-intrusive uncertainty propagation), Journal of Computational Physics, Volume 474 (2023), p. 41 (Id/No 111825) | DOI:10.1016/j.jcp.2022.111825 | Zbl:7640574
  • Paul-Christian Bürkner; Ilja Kröker; Sergey Oladyshkin; Wolfgang Nowak A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms, Journal of Computational Physics, Volume 488 (2023), p. 25 (Id/No 112210) | DOI:10.1016/j.jcp.2023.112210 | Zbl:7696975
  • Heng Wang; Xueli Huo; Qingyun Duan; Rui Liu; Shiwei Luo Uncertainty Quantification for the Noah‐MP Land Surface Model: A Case Study in a Grassland and Sandy Soil Region, Journal of Geophysical Research: Atmospheres, Volume 128 (2023) no. 20 | DOI:10.1029/2023jd038556
  • Jinfeng Ma; Hua Zheng; Ruonan Li; Kaifeng Rao; Yanzheng Yang; Weifeng Li A Hadoop cloud-based surrogate modelling framework for approximating complex hydrological models, Journal of Hydroinformatics, Volume 25 (2023) no. 2, p. 511 | DOI:10.2166/hydro.2023.184
  • Zhanlin Liu; Youngjun Choe Data-driven sparse polynomial chaos expansion for models with dependent inputs, Journal of Safety Science and Resilience, Volume 4 (2023) no. 4, p. 358 | DOI:10.1016/j.jnlssr.2023.08.003
  • Zhiqiang Wan; Jianbing Chen; Weifeng Tao; Pengfei Wei; Michael Beer; Zhongming Jiang A feature mapping strategy of metamodelling for nonlinear stochastic dynamical systems with low to high-dimensional input uncertainties, Mechanical Systems and Signal Processing, Volume 184 (2023), p. 109656 | DOI:10.1016/j.ymssp.2022.109656
  • Guiming Liang; Haiyan Li; Yunbao Huang; Lan Liu; Jinliang Lin; Xin Chen; Weibin Qiu Multilevel sampling based sparse polynomial expansion for efficient uncertainty analysis of mechanical system, Mechanical Systems and Signal Processing, Volume 186 (2023), p. 109913 | DOI:10.1016/j.ymssp.2022.109913
  • Quentin Serra; Eric Florentin; Amine Ammar Verification of polynomial chaos surrogates in the framework of structural vibrations with uncertainties, Mechanics Industry, Volume 24 (2023), p. 42 | DOI:10.1051/meca/2023037
  • Sergey Oladyshkin; Timothy Praditia; Ilja Kroeker; Farid Mohammadi; Wolfgang Nowak; Sebastian Otte The deep arbitrary polynomial chaos neural network or how deep artificial neural networks could benefit from data-driven homogeneous chaos theory, Neural Networks, Volume 166 (2023), pp. 85-104 | DOI:10.1016/j.neunet.2023.06.036 | Zbl:7755842
  • Xiukai Yuan; Shanglong Wang; Marcos A. Valdebenito; Matthias G.R. Faes; Michael Beer Sample regeneration algorithm for structural failure probability function estimation, Probabilistic Engineering Mechanics, Volume 71 (2023), p. 103387 | DOI:10.1016/j.probengmech.2022.103387
  • Subhayan De; Kurt Maute; Alireza Doostan Topology optimization under microscale uncertainty using stochastic gradients, Structural and Multidisciplinary Optimization, Volume 66 (2023) no. 1 | DOI:10.1007/s00158-022-03417-4
  • Yayun Shi; Qinsheng Lan; Xiayu Lan; Jianhui Wu; Tihao Yang; Bo Wang Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach, Structural and Multidisciplinary Optimization, Volume 66 (2023) no. 5 | DOI:10.1007/s00158-023-03559-z
  • Leilei Chen; Juan Zhao; Haozhi Li; Yajun Huang; Xiaohui Yuan A Polynomial Chaos Expansion Method for Mechanical Properties of Flexoelectric Materials Based on the Isogeometric Finite Element Method, Sustainability, Volume 15 (2023) no. 4, p. 3417 | DOI:10.3390/su15043417
  • Arash Ebrahimian; Hossein Mohammadi; Nima Maftoon Relative importance and interactions of parameters of finite-element models of human middle ear, The Journal of the Acoustical Society of America, Volume 154 (2023) no. 2, p. 619 | DOI:10.1121/10.0020273
  • Gabriele Capasso; Christian Gogu; Christian Bes; Jean Philippe Navarro; Martin Kempeneers, AIAA SCITECH 2022 Forum (2022) | DOI:10.2514/6.2022-1870
  • Jonas Siegfried Jehle; Volker Andreas Lange; Matthias Gerdts Proposing an Uncertainty Management Framework to Implement the Evidence Theory for Vehicle Crash Applications, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, Volume 8 (2022) no. 2 | DOI:10.1115/1.4053062
  • Sijie Zeng; Xiaojun Duan; Jiangtao Chen; Liang Yan Optimized sparse polynomial chaos expansion with entropy regularization, Advances in Aerodynamics, Volume 4 (2022) no. 1 | DOI:10.1186/s42774-021-00095-6
  • Taehoon Kim; Weon Shik Han; Jize Piao; Peter K. Kang; Jehyun Shin Predicting remediation efficiency of LNAPLs using surrogate polynomial chaos expansion model and global sensitivity analysis, Advances in Water Resources, Volume 163 (2022), p. 104179 | DOI:10.1016/j.advwatres.2022.104179
  • Dinesh Kumar; Mariapia Marchi; Syed Bahauddin Alam; Carlos Kavka; Yao Koutsawa; Gaston Rauchs; Salim Belouettar Multi-criteria decision making under uncertainties in composite materials selection and design, Composite Structures, Volume 279 (2022), p. 114680 | DOI:10.1016/j.compstruct.2021.114680
  • Ramin Jahanbin; Sharif Rahman Stochastic isogeometric analysis on arbitrary multipatch domains by spline dimensional decomposition, Computer Methods in Applied Mechanics and Engineering, Volume 393 (2022), p. 36 (Id/No 114813) | DOI:10.1016/j.cma.2022.114813 | Zbl:1507.65042
  • Lixiong Cao; Jie Liu; Chao Jiang; Guangzhao Liu Optimal sparse polynomial chaos expansion for arbitrary probability distribution and its application on global sensitivity analysis, Computer Methods in Applied Mechanics and Engineering, Volume 399 (2022), p. 20 (Id/No 115368) | DOI:10.1016/j.cma.2022.115368 | Zbl:1507.65018
  • Kamaljyoti Nath; Anjan Dutta; Budhaditya Hazra An adaptive scheme for random field discretization using KL expansion, Engineering with Computers, Volume 38 (2022) no. 4, p. 2937 | DOI:10.1007/s00366-021-01326-6
  • Biswarup Bhattacharyya Uncertainty quantification and reliability analysis by an adaptive sparse Bayesian inference based PCE model, Engineering with Computers, Volume 38 (2022) no. S2, p. 1437 | DOI:10.1007/s00366-021-01291-0
  • Haozhi Li; Juan Zhao; Xiaokun Guo; Yu Cheng; Yanmin Xu; Xiaohui Yuan Sensitivity analysis of flexoelectric materials surrogate model based on the isogeometric finite element method, Frontiers in Physics, Volume 10 (2022) | DOI:10.3389/fphy.2022.1111159
  • Alia Alghosoun; Nabil El Mocayd; Mohammed Seaid A nonintrusive reduced-order model for uncertainty quantification in numerical solution of one-dimensional free-surface water flows over stochastic beds, International Journal of Computational Methods, Volume 19 (2022) no. 4, p. 38 (Id/No 2150073) | DOI:10.1142/s0219876221500730 | Zbl:1550.76174
  • Gaël Poëtte; Emeric Brun Efficient uncertain keff computations with the Monte Carlo resolution of generalised polynomial chaos based reduced models, Journal of Computational Physics, Volume 456 (2022), p. 26 (Id/No 111007) | DOI:10.1016/j.jcp.2022.111007 | Zbl:7518099
  • Gaël Poëtte Numerical analysis of the Monte-Carlo noise for the resolution of the deterministic and uncertain linear Boltzmann equation (comparison of non-intrusive gPC and MC-gPC), Journal of Computational and Theoretical Transport, Volume 51 (2022) no. 1-3, pp. 1-53 | DOI:10.1080/23324309.2022.2063900 | Zbl:7585132
  • Guosheng Li; Jiawei Yang; Wenjie Wang; Zixuan Zhang; Weihua Zhang; Zeping Wu Augmented RBF metamodel for global sensitivity analysis enhanced by recursive evolution LHD and efficient K-fold cross-validation, Journal of Mechanical Science and Technology, Volume 36 (2022) no. 8, p. 4127 | DOI:10.1007/s12206-022-0731-4
  • Khalil Dammak; Ahmad Baklouti; Abdelkhalak El Hami Uncertainty analysis using generalized Polynomial Chaos for the identification of structural constraining fixtures, Journal of Sound and Vibration, Volume 530 (2022), p. 116929 | DOI:10.1016/j.jsv.2022.116929
  • Vahid Yaghoubi; Hamed Setayeshnasab; Peiman Mosaddegh; Mahmoud Kadkhodaei A stochastic approach to estimate intraocular pressure and dynamic corneal responses of the cornea, Journal of the Mechanical Behavior of Biomedical Materials, Volume 130 (2022), p. 105210 | DOI:10.1016/j.jmbbm.2022.105210
  • John D. Jakeman; Drew P. Kouri; J. Gabriel Huerta Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk, Reliability Engineering System Safety, Volume 221 (2022), p. 108280 | DOI:10.1016/j.ress.2021.108280
  • Max Ehre; Iason Papaioannou; Bruno Sudret; Daniel Straub Sequential active learning of low-dimensional model representations for reliability analysis, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 3, p. b558-b584 | DOI:10.1137/21m1416758 | Zbl:1493.62496
  • gael poette Multigroup-Like Mc Resolution of Generalised Polynomial Chaos Reduced Models of the Uncertain Linear Boltzmann Equation, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4051364
  • Lounes Ameur; Lahcene Bachioua Sensitivity analysis of queueing models based on polynomial chaos approach, Arabian Journal of Mathematics, Volume 10 (2021) no. 3, pp. 527-542 | DOI:10.1007/s40065-021-00344-y | Zbl:1475.90017
  • Amit Kumar Rathi; Arunasis Chakraborty Development of hybrid dimension adaptive sparse HDMR for stochastic finite element analysis of composite plate, Composite Structures, Volume 255 (2021), p. 112915 | DOI:10.1016/j.compstruct.2020.112915
  • Yu Zhang; Jun Xu Efficient reliability analysis with a CDA-based dimension-reduction model and polynomial chaos expansion, Computer Methods in Applied Mechanics and Engineering, Volume 373 (2021), p. 25 (Id/No 113467) | DOI:10.1016/j.cma.2020.113467 | Zbl:1506.65018
  • Zhibao Zheng; Hongzhe Dai Structural stochastic responses determination via a sample-based stochastic finite element method, Computer Methods in Applied Mechanics and Engineering, Volume 381 (2021), p. 16 (Id/No 113824) | DOI:10.1016/j.cma.2021.113824 | Zbl:1506.65233
  • Bei-Yang Zhang; Yi-Qing Ni A hybrid sequential sampling strategy for sparse polynomial chaos expansion based on compressive sampling and Bayesian experimental design, Computer Methods in Applied Mechanics and Engineering, Volume 386 (2021), p. 29 (Id/No 114130) | DOI:10.1016/j.cma.2021.114130 | Zbl:1507.62238
  • P. Bonnaire; P. Pettersson; C. F. Silva Intrusive generalized polynomial chaos with asynchronous time integration for the solution of the unsteady Navier-Stokes equations, Computers and Fluids, Volume 223 (2021), p. 15 (Id/No 104952) | DOI:10.1016/j.compfluid.2021.104952 | Zbl:1521.76632
  • Kevin Verleysen; Alessandro Parente; Francesco Contino How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage), Energy, Volume 232 (2021), p. 121016 | DOI:10.1016/j.energy.2021.121016
  • Shreyas M. Guruprasad; Prem R. Mohan Ram; Christopher Blech; Ulrich Römer; Sabine C. Langer Aircraft Cabin Noise Prediction Under Uncertainty, Fundamentals of High Lift for Future Civil Aircraft, Volume 145 (2021), p. 247 | DOI:10.1007/978-3-030-52429-6_16
  • Shuyong Duan; Lutong Shi; Li Wang; Guirong Liu An uncertainty inversion technique using two-way neural network for parameter identification of robot arms, Inverse Problems in Science and Engineering, Volume 29 (2021) no. 13, pp. 3279-3304 | DOI:10.1080/17415977.2021.1988589 | Zbl:7484757
  • Vinh Ngoc Tran; Jongho Kim A robust surrogate data assimilation approach to real-time forecasting using polynomial chaos expansion, Journal of Hydrology, Volume 598 (2021), p. 126367 | DOI:10.1016/j.jhydrol.2021.126367
  • Hasnaa H Alzahrani; Marco Lucchesi; Kassem Mustapha; Olivier P Le Maître; Omar M Knio Bayesian calibration of order and diffusivity parameters in a fractional diffusion equation, Journal of Physics Communications, Volume 5 (2021) no. 8, p. 085014 | DOI:10.1088/2399-6528/ac1507
  • Juliette Dréau; Benoit Magnain; Florence Nyssen; Alain Batailly Polynomial chaos expansion for permutation and cyclic permutation invariant systems: Application to mistuned bladed disks, Journal of Sound and Vibration, Volume 503 (2021), p. 116103 | DOI:10.1016/j.jsv.2021.116103
  • Cécile Mattrand; Pierre Beaurepaire; Nicolas Gayton Adaptive Kriging‐based Methods for Failure Probability Evaluation: Focus on AK Methods, Mechanical Engineering under Uncertainties (2021), p. 205 | DOI:10.1002/9781119817635.ch6
  • Qian Shao; Jian Liu; Qun Huang; Jie Yang; Heng Hu; Salim Belouettar; Gaetano Giunta A data-driven analysis on bridging techniques for heterogeneous materials and structures, Mechanics of Advanced Materials and Structures, Volume 28 (2021) no. 1, p. 1 | DOI:10.1080/15376494.2018.1546415
  • Nickolas Kokron; Joseph DeRose; Shi-Fan Chen; Martin White; Risa H Wechsler The cosmology dependence of galaxy clustering and lensing from a hybrid N-body–perturbation theory model, Monthly Notices of the Royal Astronomical Society, Volume 505 (2021) no. 1, p. 1422 | DOI:10.1093/mnras/stab1358
  • Nora Lüthen; Stefano Marelli; Bruno Sudret Sparse polynomial chaos expansions: literature survey and benchmark, SIAM/ASA Journal on Uncertainty Quantification, Volume 9 (2021), pp. 593-649 | DOI:10.1137/20m1315774 | Zbl:1464.65008
  • Zhanlin Liu; Youngjun Choe Data-driven sensitivity indices for models with dependent inputs using polynomial chaos expansions, Structural Safety, Volume 88 (2021), p. 101984 | DOI:10.1016/j.strusafe.2020.101984
  • Rui Teixeira; Maria Nogal; Alan O’Connor Adaptive approaches in metamodel-based reliability analysis: A review, Structural Safety, Volume 89 (2021), p. 102019 | DOI:10.1016/j.strusafe.2020.102019
  • Vinh Ngoc Tran; Jongho Kim Toward an Efficient Uncertainty Quantification of Streamflow Predictions Using Sparse Polynomial Chaos Expansion, Water, Volume 13 (2021) no. 2, p. 203 | DOI:10.3390/w13020203
  • Sayed Hamid Sohrabi; Mohammad Javad Ketabdari Stochastic modeling and sensitivity analysis of underwater sound absorber rubber coating, Applied Acoustics, Volume 164 (2020), p. 107282 | DOI:10.1016/j.apacoust.2020.107282
  • Xiangfeng Guo; Qiangqiang Sun; Daniel Dias; Eric Antoinet Probabilistic assessment of an earth dam stability design using the adaptive polynomial chaos expansion, Bulletin of Engineering Geology and the Environment, Volume 79 (2020) no. 9, p. 4639 | DOI:10.1007/s10064-020-01847-2
  • Dinesh Kumar; Yao Koutsawa; Gaston Rauchs; Mariapia Marchi; Carlos Kavka; Salim Belouettar Efficient uncertainty quantification and management in the early stage design of composite applications, Composite Structures, Volume 251 (2020), p. 112538 | DOI:10.1016/j.compstruct.2020.112538
  • Sergey Oladyshkin; Farid Mohammadi; Ilja Kroeker; Wolfgang Nowak Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory, Entropy, Volume 22 (2020) no. 8, p. 890 | DOI:10.3390/e22080890
  • Edoardo Menga; María J. Sánchez; Ignacio Romero Anisotropic meta-models for computationally expensive simulations in nonlinear mechanics, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 5, pp. 904-924 | DOI:10.1002/nme.6250 | Zbl:1548.74008
  • T. D. Dao; Q. Serra; S. Berger; E. Florentin Error estimation of polynomial chaos approximations in transient structural dynamics, International Journal of Computational Methods, Volume 17 (2020) no. 10, p. 23 (Id/No 2050003) | DOI:10.1142/s0219876220500036 | Zbl:1550.74465
  • Han Wang; Zheng Yan; Xiaoyuan Xu; Kun He Probabilistic power flow analysis of microgrid with renewable energy, International Journal of Electrical Power Energy Systems, Volume 114 (2020), p. 105393 | DOI:10.1016/j.ijepes.2019.105393
  • Biswarup Bhattacharyya Global sensitivity analysis: a Bayesian learning based polynomial chaos approach, Journal of Computational Physics, Volume 415 (2020), p. 21 (Id/No 109539) | DOI:10.1016/j.jcp.2020.109539 | Zbl:1440.62093
  • Jakob Dürrwächter; Thomas Kuhn; Fabian Meyer; Louisa Schlachter; Florian Schneider A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations, Journal of Computational and Applied Mathematics, Volume 370 (2020), p. 22 (Id/No 112602) | DOI:10.1016/j.cam.2019.112602 | Zbl:1450.65118
  • N Afanador García; C J Noriega Sanchez; G Guerrero G Quantification of uncertainty in steel plates subject to fatigue with variable load via chaos expansion polynomial, Journal of Physics: Conference Series, Volume 1708 (2020) no. 1, p. 012032 | DOI:10.1088/1742-6596/1708/1/012032
  • Hayley Guy; Alen Alexanderian; Meilin Yu A distributed active subspace method for scalable surrogate modeling of function valued outputs, Journal of Scientific Computing, Volume 85 (2020) no. 2, p. 24 (Id/No 36) | DOI:10.1007/s10915-020-01346-2 | Zbl:1453.65009
  • Gaël Poëtte Spectral convergence of the generalized polynomial chaos reduced model obtained from the uncertain linear Boltzmann equation, Mathematics and Computers in Simulation, Volume 177 (2020), pp. 24-45 | DOI:10.1016/j.matcom.2020.04.009 | Zbl:1510.65273
  • Yicheng Zhou; Zhenzhou Lu; Wanying Yun Active sparse polynomial chaos expansion for system reliability analysis, Reliability Engineering System Safety, Volume 202 (2020), p. 107025 | DOI:10.1016/j.ress.2020.107025
  • Qiuqi Li; Pingwen Zhang A variable-separation method for nonlinear partial differential equations with random inputs, SIAM Journal on Scientific Computing, Volume 42 (2020) no. 2, p. a723-a750 | DOI:10.1137/19m1262486 | Zbl:1432.35266
  • Marc Mignolet; Christian Soize Compressed principal component analysis of non-Gaussian vectors, SIAM/ASA Journal on Uncertainty Quantification, Volume 8 (2020), pp. 1261-1286 | DOI:10.1137/20m1322029 | Zbl:1451.62069
  • M.-H. Trinh; S. Berger; E. Aubry Nonlinear Dynamic Behaviour Analysis of a Clutch System with Uncertainties Using Polynomial Chaos and the Constrained Harmonic Balance Method, Shock and Vibration, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/8401745
  • Zeping Wu; Donghui Wang; Wenjie Wang; Kun Zhao; Houcun Zhou; Weihua Zhang Hybrid metamodel of radial basis function and polynomial chaos expansions with orthogonal constraints for global sensitivity analysis, Structural and Multidisciplinary Optimization, Volume 62 (2020) no. 2, p. 597 | DOI:10.1007/s00158-020-02516-4
  • Jiangjiang Zhang; Qiang Zheng; Dingjiang Chen; Laosheng Wu; Lingzao Zeng Surrogate‐Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error, Water Resources Research, Volume 56 (2020) no. 1 | DOI:10.1029/2019wr025721
  • Vinh Ngoc Tran; M. Chase Dwelle; Khachik Sargsyan; Valeriy Y. Ivanov; Jongho Kim A Novel Modeling Framework for Computationally Efficient and Accurate Real‐Time Ensemble Flood Forecasting With Uncertainty Quantification, Water Resources Research, Volume 56 (2020) no. 3 | DOI:10.1029/2019wr025727
  • Yicheng Zhou; Zhenzhou Lu Active Polynomial Chaos Expansion for Reliability-Based Design Optimization, AIAA Journal, Volume 57 (2019) no. 12, p. 5431 | DOI:10.2514/1.j058020
  • Justin Weinmeister; Xinfeng Gao; Sourajeet Roy Analysis of a Polynomial Chaos-Kriging Metamodel for Uncertainty Quantification in Aerodynamics, AIAA Journal, Volume 57 (2019) no. 6, p. 2280 | DOI:10.2514/1.j057527
  • M. Chase Dwelle; Jongho Kim; Khachik Sargsyan; Valeriy Y. Ivanov Streamflow, stomata, and soil pits: Sources of inference for complex models with fast, robust uncertainty quantification, Advances in Water Resources, Volume 125 (2019), p. 13 | DOI:10.1016/j.advwatres.2019.01.002
  • K. Dammak; S. Koubaa; A. El Hami; L. Walha; M. Haddar Numerical modelling of vibro-acoustic problem in presence of uncertainty: Application to a vehicle cabin, Applied Acoustics, Volume 144 (2019), p. 113 | DOI:10.1016/j.apacoust.2017.06.001
  • Xiao Wei; Haichao Chang; Baiwei Feng; Zuyuan Liu; Chenran Huang Hull form reliability-based robust design optimization combining polynomial chaos expansion and maximum entropy method, Applied Ocean Research, Volume 90 (2019), p. 101860 | DOI:10.1016/j.apor.2019.101860
  • Markus Köppel; Fabian Franzelin; Ilja Kröker; Sergey Oladyshkin; Gabriele Santin; Dominik Wittwar; Andrea Barth; Bernard Haasdonk; Wolfgang Nowak; Dirk Pflüger; Christian Rohde Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario, Computational Geosciences, Volume 23 (2019) no. 2, pp. 339-354 | DOI:10.1007/s10596-018-9785-x | Zbl:1414.76058
  • Yicheng Zhou; Zhenzhou Lu; Kai Cheng; Chunyan Ling An efficient and robust adaptive sampling method for polynomial chaos expansion in sparse Bayesian learning framework, Computer Methods in Applied Mechanics and Engineering, Volume 352 (2019), pp. 654-674 | DOI:10.1016/j.cma.2019.04.046 | Zbl:1441.62201
  • Xiangfeng Guo; Daniel Dias; Qiujing Pan Probabilistic stability analysis of an embankment dam considering soil spatial variability, Computers and Geotechnics, Volume 113 (2019), p. 103093 | DOI:10.1016/j.compgeo.2019.103093
  • Xiangfeng Guo; Daniel Dias; Claudio Carvajal; Laurent Peyras; Pierre Breul A comparative study of different reliability methods for high dimensional stochastic problems related to earth dam stability analyses, Engineering Structures, Volume 188 (2019), p. 591 | DOI:10.1016/j.engstruct.2019.03.056
  • Xiangfeng Guo; Dianchun Du; Daniel Dias Reliability analysis of tunnel lining considering soil spatial variability, Engineering Structures, Volume 196 (2019), p. 109332 | DOI:10.1016/j.engstruct.2019.109332
  • Rocío Rodríguez‐Cantano; Joakim Sundnes; Marie E. Rognes Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response, International Journal for Numerical Methods in Biomedical Engineering, Volume 35 (2019) no. 5 | DOI:10.1002/cnm.3178
  • Hongguan Zhang; Tadahiro Shibutani Development of stochastic isogeometric analysis (SIGA) method for uncertainty in shape, International Journal for Numerical Methods in Engineering, Volume 118 (2019) no. 1, pp. 18-37 | DOI:10.1002/nme.6008 | Zbl:1548.74960
  • Kamaljyoti Nath; Anjan Dutta; Budhaditya Hazra An iterative polynomial chaos approach toward stochastic elastostatic structural analysis with non-Gaussian randomness, International Journal for Numerical Methods in Engineering, Volume 119 (2019) no. 11, pp. 1126-1160 | DOI:10.1002/nme.6086 | Zbl:1548.74968
  • Yicheng Zhou; Zhenzhou Lu; Kai Cheng A new surrogate modeling method combining polynomial chaos expansion and Gaussian kernel in a sparse Bayesian learning framework, International Journal for Numerical Methods in Engineering, Volume 120 (2019) no. 4, pp. 498-516 | DOI:10.1002/nme.6145 | Zbl:1548.60028
  • Nassim Kernou; Youcef Bouafia Development of New Approach in Reliability Analysis for Excellent Predictive Quality of the Approximation Using Adaptive Kriging, International Journal of Engineering Research in Africa, Volume 44 (2019), p. 44 | DOI:10.4028/www.scientific.net/jera.44.44
  • Gaël Poëtte A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation, Journal of Computational Physics, Volume 385 (2019), pp. 135-162 | DOI:10.1016/j.jcp.2019.01.052 | Zbl:1451.65006
  • Kamaljyoti Nath; Anjan Dutta; Budhaditya Hazra An iterative polynomial chaos approach for solution of structural mechanics problem with Gaussian material property, Journal of Computational Physics, Volume 390 (2019), pp. 425-451 | DOI:10.1016/j.jcp.2019.04.014 | Zbl:1452.74109
  • Jian Song; Yun Yang; Gan Chen; Xiaomin Sun; Jin Lin; Jianfeng Wu; Jichun Wu Surrogate assisted multi-objective robust optimization for groundwater monitoring network design, Journal of Hydrology, Volume 577 (2019), p. 123994 | DOI:10.1016/j.jhydrol.2019.123994
  • N Afanador García Quantification of uncertainty in metallic elements subjected to fatigue, Journal of Physics: Conference Series, Volume 1329 (2019) no. 1, p. 012011 | DOI:10.1088/1742-6596/1329/1/012011
  • Manav Vohra; Alen Alexanderian; Cosmin Safta; Sankaran Mahadevan Sensitivity-driven adaptive construction of reduced-space surrogates, Journal of Scientific Computing, Volume 79 (2019) no. 2, pp. 1335-1359 | DOI:10.1007/s10915-018-0894-4 | Zbl:1419.65006
  • Yicheng Zhou; Zhenzhou Lu; Kai Cheng; Yan Shi An expanded sparse Bayesian learning method for polynomial chaos expansion, Mechanical Systems and Signal Processing, Volume 128 (2019), p. 153 | DOI:10.1016/j.ymssp.2019.03.032
  • Duc Thinh Kieu; Baptiste Bergeot; Marie-Laure Gobert; Sébastien Berger Stability analysis of a clutch system with uncertain parameters using sparse polynomial chaos expansions, Mechanics Industry, Volume 20 (2019) no. 1, p. 104 | DOI:10.1051/meca/2019003
  • Fatma Abid; Tarek Merzouki; Abdelkhalak El Hami; Hassen Trabelsi; Lassaad Walha; Mohamed Haddar Uncertainty of shape memory alloy micro-actuator using generalized polynomial chaos method, Microsystem Technologies, Volume 25 (2019) no. 4, p. 1505 | DOI:10.1007/s00542-018-4199-1
  • I.V. González; M.A. Valdebenito; J.I. Correa; H.A. Jensen Calculation of second order statistics of uncertain linear systems applying reduced order models, Reliability Engineering System Safety, Volume 190 (2019), p. 106514 | DOI:10.1016/j.ress.2019.106514
  • Yicheng Zhou; Zhenzhou Lu; Kai Cheng Sparse polynomial chaos expansions for global sensitivity analysis with partial least squares and distance correlation, Structural and Multidisciplinary Optimization, Volume 59 (2019) no. 1, p. 229 | DOI:10.1007/s00158-018-2062-8
  • Mingang Yin; Jian Wang; Zhili Sun An innovative DoE strategy of the kriging model for structural reliability analysis, Structural and Multidisciplinary Optimization, Volume 60 (2019) no. 6, p. 2493 | DOI:10.1007/s00158-019-02337-0
  • Mehrdad Raisee; Dinesh Kumar; Chris Lacor Non-intrusive Uncertainty Quantification by Combination of Reduced Basis Method and Regression-based Polynomial Chaos Expansion, Uncertainty Management for Robust Industrial Design in Aeronautics, Volume 140 (2019), p. 169 | DOI:10.1007/978-3-319-77767-2_10
  • Chris Lacor; Éric Savin Polynomial Chaos and Collocation Methods and Their Range of Applicability, Uncertainty Management for Robust Industrial Design in Aeronautics, Volume 140 (2019), p. 687 | DOI:10.1007/978-3-319-77767-2_42
  • Lukáš Novák; Drahomír Novák, Volume 1978 (2018), p. 470025 | DOI:10.1063/1.5044095
  • Biswarup Bhattacharyya A critical appraisal of design of experiments for uncertainty quantification, Archives of Computational Methods in Engineering, Volume 25 (2018) no. 3, pp. 727-751 | DOI:10.1007/s11831-017-9211-x | Zbl:1397.62271
  • Muhannad Aldosary; Jinsheng Wang; Chenfeng Li Structural reliability and stochastic finite element methods, Engineering Computations, Volume 35 (2018) no. 6, p. 2165 | DOI:10.1108/ec-04-2018-0157
  • Xiangfeng Guo; Daniel Dias; Claudio Carvajal; Laurent Peyras; Pierre Breul Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion, Engineering Structures, Volume 174 (2018), p. 295 | DOI:10.1016/j.engstruct.2018.07.053
  • Alexander E. David; Giovanni Sansavini Identification of critical states in power systems by limit state surface reconstruction, International Journal of Electrical Power Energy Systems, Volume 101 (2018), p. 162 | DOI:10.1016/j.ijepes.2018.03.004
  • Lijian Jiang; Qiuqi Li Model reduction method using variable-separation for stochastic saddle point problems, Journal of Computational Physics, Volume 354 (2018), pp. 43-66 | DOI:10.1016/j.jcp.2017.10.056 | Zbl:1380.35170
  • Panagiotis A. Tsilifis Gradient-Informed Basis Adaptation for Legendre Chaos Expansions, Journal of Verification, Validation and Uncertainty Quantification, Volume 3 (2018) no. 1 | DOI:10.1115/1.4040802
  • Vahid Yaghoubi; Sadegh Rahrovani; Hassan Nahvi; Stefano Marelli Reduced order surrogate modeling technique for linear dynamic systems, Mechanical Systems and Signal Processing, Volume 111 (2018), p. 172 | DOI:10.1016/j.ymssp.2018.02.020
  • Lilli Bergner; Christian Kirches The polynomial chaos approach for reachable set propagation with application to chance-constrained nonlinear optimal control under parametric uncertainties, Optimal Control Applications Methods, Volume 39 (2018) no. 2, pp. 471-488 | DOI:10.1002/oca.2329 | Zbl:1393.93020
  • Nicole Gaus; Carsten Proppe; Cédric Zaccardi Modeling of dynamical systems with friction between randomly rough surfaces, Probabilistic Engineering Mechanics, Volume 54 (2018), p. 82 | DOI:10.1016/j.probengmech.2017.07.004
  • Sergey Oladyshkin; Wolfgang Nowak Incomplete statistical information limits the utility of high-order polynomial chaos expansions, Reliability Engineering System Safety, Volume 169 (2018), p. 137 | DOI:10.1016/j.ress.2017.08.010
  • Amit Kumar Rathi; Arunasis Chakraborty Dimension adaptive finite difference decomposition using multiple sparse grids for stochastic computation, Structural Safety, Volume 75 (2018), p. 119 | DOI:10.1016/j.strusafe.2018.06.004
  • R. Schöbi; B. Sudret; S. Marelli Rare Event Estimation Using Polynomial-Chaos Kriging, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, Volume 3 (2017) no. 2 | DOI:10.1061/ajrua6.0000870
  • Loïc Giraldi; Olivier P. Le Maître; Kyle T. Mandli; Clint N. Dawson; Ibrahim Hoteit; Omar M. Knio Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate, Computational Geosciences, Volume 21 (2017) no. 4, pp. 683-699 | DOI:10.1007/s10596-017-9646-z | Zbl:1369.86007
  • Qian Shao; Anis Younes; Marwan Fahs; Thierry A. Mara Bayesian sparse polynomial chaos expansion for global sensitivity analysis, Computer Methods in Applied Mechanics and Engineering, Volume 318 (2017), pp. 474-496 | DOI:10.1016/j.cma.2017.01.033 | Zbl:1439.62088
  • Loïc Le Gratiet; Stefano Marelli; Bruno Sudret Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, Handbook of Uncertainty Quantification (2017), p. 1289 | DOI:10.1007/978-3-319-12385-1_38
  • K. Dammak; A. El Hami; S. Koubaa; L. Walha; M. Haddar Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos, International Journal of Mechanical Sciences, Volume 134 (2017), p. 75 | DOI:10.1016/j.ijmecsci.2017.10.003
  • Simon Abraham; Mehrdad Raisee; Ghader Ghorbaniasl; Francesco Contino; Chris Lacor A robust and efficient stepwise regression method for building sparse polynomial chaos expansions, Journal of Computational Physics, Volume 332 (2017), pp. 461-474 | DOI:10.1016/j.jcp.2016.12.015 | Zbl:1384.62216
  • Alejandra Camacho; Alvaro Talavera; Alexandre A. Emerick; Marco A.C. Pacheco; João Zanni Uncertainty quantification in reservoir simulation models with polynomial chaos expansions: Smolyak quadrature and regression method approach, Journal of Petroleum Science and Engineering, Volume 153 (2017), p. 203 | DOI:10.1016/j.petrol.2017.03.046
  • Sahand Sabet; Mohammad Poursina Computed torque control of fully-actuated nondeterministic multibody systems, Multibody System Dynamics, Volume 41 (2017) no. 4, pp. 347-365 | DOI:10.1007/s11044-017-9577-4 | Zbl:1418.70013
  • Vahid Yaghoubi; Stefano Marelli; Bruno Sudret; Thomas Abrahamsson Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation, Probabilistic Engineering Mechanics, Volume 48 (2017), p. 39 | DOI:10.1016/j.probengmech.2017.04.003
  • Qiuqi Li; Lijian Jiang A novel variable-separation method based on sparse and low rank representation for stochastic partial differential equations, SIAM Journal on Scientific Computing, Volume 39 (2017) no. 6, p. a2879-a2910 | DOI:10.1137/16m1100010 | Zbl:1379.65004
  • Zequn Wang Piecewise point classification for uncertainty propagation with nonlinear limit states, Structural and Multidisciplinary Optimization, Volume 56 (2017) no. 2, p. 285 | DOI:10.1007/s00158-017-1664-x
  • Xinfeng Gao; Yijun Wang; Nathan Spotts; Nelson Xie; Sourajeet Roy; Aditi Prasad, 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016) | DOI:10.2514/6.2016-5057
  • José David Arregui-Mena; Lee Margetts; Paul M. Mummery Practical application of the stochastic finite element method, Archives of Computational Methods in Engineering, Volume 23 (2016) no. 1, pp. 171-190 | DOI:10.1007/s11831-014-9139-3 | Zbl:1348.65160
  • Gouthami Senthamaraikkannan; Ian Gates; Vinay Prasad Multiphase reactive-transport simulations for estimation and robust optimization of the field scale production of microbially enhanced coalbed methane, Chemical Engineering Science, Volume 149 (2016), p. 63 | DOI:10.1016/j.ces.2016.04.017
  • Jérémy Lebon; Guénhaël Le Quilliec; Piotr Breitkopf; Rajan Filomeno Coelho; Pierre Villon Fat Latin Hypercube Sampling and Efficient Sparse Polynomial Chaos Expansion for Uncertainty Propagation on Finite Precision Models: Application to 2D Deep Drawing Process, Computational Methods for Solids and Fluids, Volume 41 (2016), p. 185 | DOI:10.1007/978-3-319-27996-1_8
  • Dinesh Kumar; Mehrdad Raisee; Chris Lacor An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD, Computers and Fluids, Volume 138 (2016), pp. 67-82 | DOI:10.1016/j.compfluid.2016.08.015 | Zbl:1390.76800
  • Vinzenz Gregor Eck; Wouter Paulus Donders; Jacob Sturdy; Jonathan Feinberg; Tammo Delhaas; Leif Rune Hellevik; Wouter Huberts A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications, International Journal for Numerical Methods in Biomedical Engineering, Volume 32 (2016) no. 8 | DOI:10.1002/cnm.2755
  • Joseph B. Nagel; Bruno Sudret Spectral likelihood expansions for Bayesian inference, Journal of Computational Physics, Volume 309 (2016), pp. 267-294 | DOI:10.1016/j.jcp.2015.12.047 | Zbl:1351.62077
  • Katerina Konakli; Bruno Sudret Polynomial meta-models with canonical low-rank approximations: numerical insights and comparison to sparse polynomial chaos expansions, Journal of Computational Physics, Volume 321 (2016), pp. 1144-1169 | DOI:10.1016/j.jcp.2016.06.005 | Zbl:1349.60056
  • Professor Slawomir Wiak; Peter Offermann; Kay Hameyer Analysis of FE, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Volume 34 (2015) no. 2, p. 596 | DOI:10.1108/compel-07-2014-0174
  • Danny Weiss; Zohar Yosibash Uncertainty quantification for a 1D thermo-hyperelastic coupled problem using polynomial chaos projection and p-FEMs, Computers Mathematics with Applications, Volume 70 (2015) no. 7, pp. 1701-1720 | DOI:10.1016/j.camwa.2015.04.024 | Zbl:1443.65377
  • Loïc Le Gratiet; Stefano Marelli; Bruno Sudret Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, Handbook of Uncertainty Quantification (2015), p. 1 | DOI:10.1007/978-3-319-11259-6_38-1
  • Konstantin Weise; Luca Di Rienzo; Hartmut Brauer; Jens Haueisen; Hannes Toepfer Uncertainty Analysis in Transcranial Magnetic Stimulation Using Nonintrusive Polynomial Chaos Expansion, IEEE Transactions on Magnetics, Volume 51 (2015) no. 7, p. 1 | DOI:10.1109/tmag.2015.2390593
  • Ilaria Liorni; Marta Parazzini; Serena Fiocchi; Paolo Ravazzani Study of the Influence of the Orientation of a 50-Hz Magnetic Field on Fetal Exposure Using Polynomial Chaos Decomposition, International Journal of Environmental Research and Public Health, Volume 12 (2015) no. 6, p. 5934 | DOI:10.3390/ijerph120605934
  • Pierric Kersaudy; Bruno Sudret; Nadège Varsier; Odile Picon; Joe Wiart A new surrogate modeling technique combining Kriging and polynomial chaos expansions - application to uncertainty analysis in computational dosimetry, Journal of Computational Physics, Volume 286 (2015), pp. 103-117 | DOI:10.1016/j.jcp.2015.01.034 | Zbl:1351.94003
  • D. H. Mac; Z. Tang; S. Clénet; E. Creusé Residual-based a posteriori error estimation for stochastic magnetostatic problems, Journal of Computational and Applied Mathematics, Volume 289 (2015), pp. 51-67 | DOI:10.1016/j.cam.2015.03.027 | Zbl:1325.78011
  • E. Jacquelin; S. Adhikari; J.-J. Sinou; M.I. Friswell Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences, Journal of Sound and Vibration, Volume 356 (2015), p. 144 | DOI:10.1016/j.jsv.2015.06.039
  • Mass Per Pettersson; Gianluca Iaccarino; Jan Nordström Polynomial Chaos Methods, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations (2015), p. 23 | DOI:10.1007/978-3-319-10714-1_3
  • F. Anstett-Collin; J. Goffart; T. Mara; L. Denis-Vidal Sensitivity analysis of complex models: Coping with dynamic and static inputs, Reliability Engineering System Safety, Volume 134 (2015), p. 268 | DOI:10.1016/j.ress.2014.08.010
  • Faidra Stavropoulou; Johannes Müller Parametrization of random vectors in polynomial chaos expansions via optimal transportation, SIAM Journal on Scientific Computing, Volume 37 (2015) no. 6, p. a2535-a2557 | DOI:10.1137/130949063 | Zbl:1351.60089
  • Zhen Gao; Tao Zhou On the Choice of Design Points for Least Square Polynomial Approximations with Application to Uncertainty Quantification, Communications in Computational Physics, Volume 16 (2014) no. 2, p. 365 | DOI:10.4208/cicp.130813.060214a
  • Vaibhav Yadav; Sharif Rahman Adaptive-sparse polynomial dimensional decomposition methods for high-dimensional stochastic computing, Computer Methods in Applied Mechanics and Engineering, Volume 274 (2014), pp. 56-83 | DOI:10.1016/j.cma.2014.01.027 | Zbl:1296.62115
  • G. Migliorati; F. Nobile; E. von Schwerin; R. Tempone Analysis of discrete L2 projection on polynomial spaces with random evaluations, Foundations of Computational Mathematics, Volume 14 (2014) no. 3, pp. 419-456 | DOI:10.1007/s10208-013-9186-4 | Zbl:1301.41005
  • Pierric Kersaudy; Shermila Mostarshedi; Bruno Sudret; Odile Picon; Joe Wiart Stochastic Analysis of Scattered Field by Building Facades Using Polynomial Chaos, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 12, p. 6382 | DOI:10.1109/tap.2014.2359478
  • Torben Pätz; Tobias Preusser Segmentation of stochastic images using level set propagation with uncertain speed, Journal of Mathematical Imaging and Vision, Volume 48 (2014) no. 3, pp. 467-487 | DOI:10.1007/s10851-013-0421-z | Zbl:1365.68425
  • Tao Zhou; Akil Narayan; Zhiqiang Xu Multivariate Discrete Least-Squares Approximations with a New Type of Collocation Grid, SIAM Journal on Scientific Computing, Volume 36 (2014) no. 5, p. A2401 | DOI:10.1137/130950434
  • Floriane Anstett-Collin; Thierry Mara; Michel Basset Application of global sensitivity analysis to a tire model with correlated inputs, Simulation Modelling Practice and Theory, Volume 44 (2014), p. 54 | DOI:10.1016/j.simpat.2014.03.003
  • V. Dubourg; B. Sudret Meta-model-based importance sampling for reliability sensitivity analysis, Structural Safety, Volume 49 (2014), p. 27 | DOI:10.1016/j.strusafe.2013.08.010
  • F. Rupin; G. Blatman; S. Lacaze; T. Fouquet; B. Chassignole Probabilistic approaches to compute uncertainty intervals and sensitivity factors of ultrasonic simulations of a weld inspection, Ultrasonics, Volume 54 (2014) no. 4, p. 1037 | DOI:10.1016/j.ultras.2013.12.006
  • Bruno Sudret; Géraud Blatman; Marc Berveiller Response Surfaces based on Polynomial Chaos Expansions, Construction Reliability (2013), p. 147 | DOI:10.1002/9781118601099.ch8
  • Tamara Al‐Bittar; Abdul‐Hamid Soubra Bearing capacity of strip footings on spatially random soils using sparse polynomial chaos expansion, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 37 (2013) no. 13, p. 2039 | DOI:10.1002/nag.2120
  • C. Soize Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances, Journal of Sound and Vibration, Volume 332 (2013) no. 10, p. 2379 | DOI:10.1016/j.jsv.2011.10.010
  • N. Roussouly; F. Petitjean; M. Salaun A new adaptive response surface method for reliability analysis, Probabilistic Engineering Mechanics, Volume 32 (2013), p. 103 | DOI:10.1016/j.probengmech.2012.10.001
  • André Teófilo Beck; Wellison José de Santana Gomes Stochastic fracture mechanics using polynomial chaos, Probabilistic Engineering Mechanics, Volume 34 (2013), p. 26 | DOI:10.1016/j.probengmech.2013.04.002
  • G. Migliorati; F. Nobile; E. von Schwerin; R. Tempone Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 3, p. A1440 | DOI:10.1137/120897109
  • Torben Patz; Tobias Preusser Segmentation of Stochastic Images With a Stochastic Random Walker Method, IEEE Transactions on Image Processing, Volume 21 (2012) no. 5, p. 2424 | DOI:10.1109/tip.2012.2187531
  • Hermann G. Matthies; Elmar Zander Solving stochastic systems with low-rank tensor compression, Linear Algebra and its Applications, Volume 436 (2012) no. 10, pp. 3819-3838 | DOI:10.1016/j.laa.2011.04.017 | Zbl:1241.65016
  • Christian Soize Stochastic Models of Uncertainties in Computational Structural Dynamics and Structural Acoustics, Nondeterministic Mechanics (2012), p. 61 | DOI:10.1007/978-3-7091-1306-6_2
  • References, Stochastic Models of Uncertainties in Computational Mechanics (2012), p. 91 | DOI:10.1061/9780784412237.rf
  • Marc Berveiller; Yann Le Pape; Bruno Sudret; Frédéric Perrin Updating the long-term creep strains in concrete containment vessels by using Markov chain Monte Carlo simulation and polynomial chaos expansions, Structure and Infrastructure Engineering, Volume 8 (2012) no. 5, p. 425 | DOI:10.1080/15732479.2010.539057
  • H. M. Panayirci; G. I. Schuëller On the capabilities of the polynomial chaos expansion method within SFE analysis – an overview, Archives of Computational Methods in Engineering, Volume 18 (2011) no. 1, pp. 43-55 | DOI:10.1007/s11831-011-9058-5 | Zbl:1284.74129
  • Hermann G. Matthies; Elmar Zander Sparse representations in stochastic mechanics, Computational methods in stochastic dynamics. Selected papers based on the presentations at the 2nd international conference on computational methods in structural dynamics and earthquake engineering (COMPDYN 2009), and 2nd south east European conference on computational mechanics (SEECCM 2009, Rhodos, Greece, June 22–24, 2009 ., New York, NY: Springer, 2011, pp. 247-265 | DOI:10.1007/978-90-481-9987-7_13 | Zbl:1250.82003
  • Rajan Filomeno Coelho; Philippe Bouillard Multi-Objective Reliability-Based Optimization with Stochastic Metamodels, Evolutionary Computation, Volume 19 (2011) no. 4, p. 525 | DOI:10.1162/evco_a_00034
  • F. A. Diazdelao; S. Adhikari Gaussian process emulators for the stochastic finite element method, International Journal for Numerical Methods in Engineering, Volume 87 (2011) no. 6, pp. 521-540 | DOI:10.1002/nme.3116 | Zbl:1242.74107
  • Géraud Blatman; Bruno Sudret Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, Volume 230 (2011) no. 6, pp. 2345-2367 | DOI:10.1016/j.jcp.2010.12.021 | Zbl:1210.65019
  • Chao Hu; Byeng D. Youn Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems, Structural and Multidisciplinary Optimization, Volume 43 (2011) no. 3, pp. 419-442 | DOI:10.1007/s00158-010-0568-9 | Zbl:1274.74271
  • Rajan Filomeno Coelho; Jérémy Lebon; Philippe Bouillard Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion: application to the multiobjective reliability-based optimization of space truss structures, Structural and Multidisciplinary Optimization, Volume 43 (2011) no. 5, pp. 707-729 | DOI:10.1007/s00158-010-0608-5 | Zbl:1274.74267
  • Vincent Dubourg; Bruno Sudret; Jean-Marc Bourinet Reliability-based design optimization using kriging surrogates and subset simulation, Structural and Multidisciplinary Optimization, Volume 44 (2011) no. 5, p. 673 | DOI:10.1007/s00158-011-0653-8
  • Anthony Nouy Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems, Archives of Computational Methods in Engineering, Volume 17 (2010) no. 4, pp. 403-434 | DOI:10.1007/s11831-010-9054-1 | Zbl:1269.76079
  • Alban Notin; Nicolas Gayton; Jean Luc Dulong; Maurice Lemaire; Pierre Villon; Haidar Jaffal RPCM: a strategy to perform reliability analysis using polynomial chaos and resampling, European Journal of Computational Mechanics, Volume 19 (2010) no. 8, p. 795 | DOI:10.3166/ejcm.19.795-830
  • A. Nouy; A. Clément eXtended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces, International Journal for Numerical Methods in Engineering, Volume 83 (2010) no. 10, pp. 1312-1344 | DOI:10.1002/nme.2865 | Zbl:1202.74182
  • Géraud Blatman; Bruno Sudret An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics, Volume 25 (2010) no. 2, p. 183 | DOI:10.1016/j.probengmech.2009.10.003
  • Géraud Blatman; Bruno Sudret Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliability Engineering System Safety, Volume 95 (2010) no. 11, p. 1216 | DOI:10.1016/j.ress.2010.06.015
  • Liangsheng Shi; Dongxiao Zhang; Lin Lin; Jinzhong Yang A multiscale probabilistic collocation method for subsurface flow in heterogeneous media, Water Resources Research, Volume 46 (2010) no. 11 | DOI:10.1029/2010wr009066
  • Anthony Nouy Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Archives of Computational Methods in Engineering, Volume 16 (2009) no. 3, pp. 251-285 | DOI:10.1007/s11831-009-9034-5 | Zbl:1360.65036
  • Hermann G. Matthies Stochastic finite elements: Computational approaches to stochastic partial differential equations, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 88 (2008) no. 11, pp. 849-873 | DOI:10.1002/zamm.200800095 | Zbl:1158.65009

Cité par 204 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: