[Une nouvelle formulation des écoulements diphasiques immiscibles compressibles en milieux poreux]
A new formulation is proposed to describe immiscible compressible two-phase flow in porous media. The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically.
Une nouvelle formulation est proposée pour décrire les écoulements diphasiques immiscibles compressibles en milieux poreux. Ce modèle est basé sur la notion de pression globale. Les équations du problème sont écrites sous forme de flux fractionnel et introduisent un système couplé faisant intervenir une équation parabolique nonlinéaire (équation de la pression globale) et une équation de diffusion–convection nonlinéaire (équation de la saturation). Cette formulation permet la mise en oeuvre d'une méthode de calcul numérique performante pour le système diphasique complet.
Accepté le :
Publié le :
Mots-clés : Milieux poreux, Compressible, Immiscible, Eau–Gaz, Pression globale, Déchets nucléaires
Brahim Amaziane 1 ; Mladen Jurak 2
@article{CRMECA_2008__336_7_600_0, author = {Brahim Amaziane and Mladen Jurak}, title = {A new formulation of immiscible compressible two-phase flow in porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {600--605}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2008}, doi = {10.1016/j.crme.2008.04.008}, language = {en}, }
Brahim Amaziane; Mladen Jurak. A new formulation of immiscible compressible two-phase flow in porous media. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 600-605. doi : 10.1016/j.crme.2008.04.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.008/
[1] Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986
[2] Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990
[3] From single-phase to compositional flow: Applicability of mixed finite elements, Transport in Porous Media, Volume 27 (1997), pp. 225-242
[4] Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia, 2006
[5] Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, London, 1991
[6] ANDRA, Couplex-Gaz, 2006. Available online at: http://www.andra.fr/interne.php3?id_article=916&id_rubrique=129
- Mathematical analysis of the two‐phase two‐component fluid flow in porous media by an artificial persistent variables approach, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 2, p. 2612 | DOI:10.1002/mma.10454
- Modeling Two-Phase Flow Caused by Hydrate Dissociation in a Reservoir on the Concept of Global Pressure, SPE Journal, Volume 28 (2023) no. 01, p. 80 | DOI:10.2118/210594-pa
- Convergence of a finite volume scheme for immiscible compressible two-phase flow in porous media by the concept of the global pressure, Journal of Computational and Applied Mathematics, Volume 399 (2022), p. 113728 | DOI:10.1016/j.cam.2021.113728
- Gas transport modelling at different spatial scales of a geological repository in clay host rock, Environmental Earth Sciences, Volume 78 (2019) no. 6 | DOI:10.1007/s12665-019-8230-3
- A Lax–Wendroff-IMPES scheme for a two-phase flow in porous media using interior penalty discontinuous Galerkin method, Numerical Heat Transfer, Part B: Fundamentals, Volume 75 (2019) no. 5, p. 325 | DOI:10.1080/10407790.2019.1627825
- Two-phase Two-component Flow in Porous Media in Low Solubility Regime, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, p. 2019 | DOI:10.1137/18m1182206
- A new sequential method for three-phase immiscible flow in poroelastic media, Journal of Computational Physics, Volume 373 (2018), p. 493 | DOI:10.1016/j.jcp.2018.06.069
- Modeling and simulation of surfactant–polymer flooding using a new hybrid method, Journal of Computational Physics, Volume 335 (2017), p. 249 | DOI:10.1016/j.jcp.2017.01.038
- Finite element solution for a coal-bed methane reservoir model, Mathematics and Computers in Simulation, Volume 137 (2017), p. 448 | DOI:10.1016/j.matcom.2017.01.005
- A semi-discrete central scheme for incompressible multiphase flow in porous media in several space dimensions, Mathematics and Computers in Simulation, Volume 140 (2017), p. 24 | DOI:10.1016/j.matcom.2017.01.008
- An improved homogenization result for immiscible compressible two-phase flow in porous media, Networks Heterogeneous Media, Volume 12 (2017) no. 1, p. 147 | DOI:10.3934/nhm.2017006
- Gas migration modelling in geological repository module in clay formation and sensitivity analysis, Engineering Geology, Volume 213 (2016), p. 158 | DOI:10.1016/j.enggeo.2016.09.007
- Homogenization of compressible two-phase two-component flow in porous media, Nonlinear Analysis: Real World Applications, Volume 30 (2016), p. 213 | DOI:10.1016/j.nonrwa.2016.01.006
- Modeling compositional compressible two-phase flow in porous media by the concept of the global pressure, Computational Geosciences, Volume 18 (2014) no. 3-4, p. 297 | DOI:10.1007/s10596-013-9362-2
- Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 2, p. 191 | DOI:10.3934/dcdss.2014.7.191
- CONVERGENCE OF A FINITE VOLUME SCHEME FOR GAS–WATER FLOW IN A MULTI-DIMENSIONAL POROUS MEDIUM, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 01, p. 145 | DOI:10.1142/s0218202513500498
- Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 07, p. 1421 | DOI:10.1142/s0218202514500055
- Homogenization results for a coupled system modelling immiscible compressible two-phase flow in porous media by the concept of global pressure, Applicable Analysis, Volume 92 (2013) no. 7, p. 1417 | DOI:10.1080/00036811.2012.682059
- The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 5, p. 1217 | DOI:10.3934/dcdsb.2013.18.1217
- Two-Component Two-Compressible Flow in a Porous Medium, Acta Applicandae Mathematicae, Volume 117 (2012) no. 1, p. 15 | DOI:10.1007/s10440-011-9648-0
- Numerical simulations of water–gas flow in heterogeneous porous media with discontinuous capillary pressures by the concept of global pressure, Journal of Computational and Applied Mathematics, Volume 236 (2012) no. 17, p. 4227 | DOI:10.1016/j.cam.2012.05.013
- Time of complete displacement of an immiscible compressible fluid by water in porous media: Application to gas migration in a deep nuclear waste repository, Nonlinear Analysis: Real World Applications, Volume 13 (2012) no. 5, p. 2144 | DOI:10.1016/j.nonrwa.2012.01.009
- Numerical modeling of formation damage by two-phase particulate transport processes during CO2 injection in deep heterogeneous porous media, Advances in Water Resources, Volume 34 (2011) no. 1, p. 62 | DOI:10.1016/j.advwatres.2010.09.009
- An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media, Journal of Differential Equations, Volume 250 (2011) no. 3, p. 1685 | DOI:10.1016/j.jde.2010.09.008
- Three-phase compressible flow in porous media: Total Differential Compatible interpolation of relative permeabilities, Journal of Computational Physics, Volume 229 (2010) no. 12, p. 4762 | DOI:10.1016/j.jcp.2010.03.013
- Modeling and Numerical Simulations of Immiscible Compressible Two-Phase Flow in Porous Media by the Concept of Global Pressure, Transport in Porous Media, Volume 84 (2010) no. 1, p. 133 | DOI:10.1007/s11242-009-9489-8
- A fully equivalent global pressure formulation for three-phases compressible flows, Applicable Analysis, Volume 88 (2009) no. 10-11, p. 1527 | DOI:10.1080/00036810902994276
- On the effective density for compressible flow in porous media, Physica A: Statistical Mechanics and its Applications, Volume 388 (2009) no. 17, p. 3288 | DOI:10.1016/j.physa.2009.05.025
Cité par 28 documents. Sources : Crossref
Commentaires - Politique