Comptes Rendus
A new formulation of immiscible compressible two-phase flow in porous media
[Une nouvelle formulation des écoulements diphasiques immiscibles compressibles en milieux poreux]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 600-605.

A new formulation is proposed to describe immiscible compressible two-phase flow in porous media. The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically.

Une nouvelle formulation est proposée pour décrire les écoulements diphasiques immiscibles compressibles en milieux poreux. Ce modèle est basé sur la notion de pression globale. Les équations du problème sont écrites sous forme de flux fractionnel et introduisent un système couplé faisant intervenir une équation parabolique nonlinéaire (équation de la pression globale) et une équation de diffusion–convection nonlinéaire (équation de la saturation). Cette formulation permet la mise en oeuvre d'une méthode de calcul numérique performante pour le système diphasique complet.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2008.04.008
Keywords: Porous media, Compressible, Immiscible, Water–Gas, Global pressure, Nuclear waste
Mots-clés : Milieux poreux, Compressible, Immiscible, Eau–Gaz, Pression globale, Déchets nucléaires

Brahim Amaziane 1 ; Mladen Jurak 2

1 Laboratoire de mathématiques appliquées, CNRS-UMR 5142, Université de Pau, avenue de l'Université, 64000 Pau, France
2 Department of Mathematics, University of Zagreb, Bijenička c. 30, 10000, Zagreb, Croatia
@article{CRMECA_2008__336_7_600_0,
     author = {Brahim Amaziane and Mladen Jurak},
     title = {A new formulation of immiscible compressible two-phase flow in porous media},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {600--605},
     publisher = {Elsevier},
     volume = {336},
     number = {7},
     year = {2008},
     doi = {10.1016/j.crme.2008.04.008},
     language = {en},
}
TY  - JOUR
AU  - Brahim Amaziane
AU  - Mladen Jurak
TI  - A new formulation of immiscible compressible two-phase flow in porous media
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 600
EP  - 605
VL  - 336
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2008.04.008
LA  - en
ID  - CRMECA_2008__336_7_600_0
ER  - 
%0 Journal Article
%A Brahim Amaziane
%A Mladen Jurak
%T A new formulation of immiscible compressible two-phase flow in porous media
%J Comptes Rendus. Mécanique
%D 2008
%P 600-605
%V 336
%N 7
%I Elsevier
%R 10.1016/j.crme.2008.04.008
%G en
%F CRMECA_2008__336_7_600_0
Brahim Amaziane; Mladen Jurak. A new formulation of immiscible compressible two-phase flow in porous media. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 600-605. doi : 10.1016/j.crme.2008.04.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.008/

[1] G. Chavent; J. Jaffré Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986

[2] S.N. Antontsev; A.V. Kazhikhov; V.N. Monakhov Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990

[3] Z. Chen; R.E. Ewing From single-phase to compositional flow: Applicability of mixed finite elements, Transport in Porous Media, Volume 27 (1997), pp. 225-242

[4] Z. Chen; G. Huan; Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia, 2006

[5] J. Bear; Y. Bachmat Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, London, 1991

[6] ANDRA, Couplex-Gaz, 2006. Available online at: http://www.andra.fr/interne.php3?id_article=916&id_rubrique=129

  • Anja Vrbaški; Ana Žgaljić Keko Mathematical analysis of the two‐phase two‐component fluid flow in porous media by an artificial persistent variables approach, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 2, p. 2612 | DOI:10.1002/mma.10454
  • Xuejing Deng; Shuxin Han; Haijing Wang; Zhiyuan Wang; Liang Li; Long Yu Modeling Two-Phase Flow Caused by Hydrate Dissociation in a Reservoir on the Concept of Global Pressure, SPE Journal, Volume 28 (2023) no. 01, p. 80 | DOI:10.2118/210594-pa
  • Brahim Amaziane; Mladen Jurak; Ivana Radišić Convergence of a finite volume scheme for immiscible compressible two-phase flow in porous media by the concept of the global pressure, Journal of Computational and Applied Mathematics, Volume 399 (2022), p. 113728 | DOI:10.1016/j.cam.2021.113728
  • Jacques Wendling; Darius Justinavicius; Manuel Sentis; Brahim Amaziane; Alexander Bond; Nicola J. Calder; Eloi Treille Gas transport modelling at different spatial scales of a geological repository in clay host rock, Environmental Earth Sciences, Volume 78 (2019) no. 6 | DOI:10.1007/s12665-019-8230-3
  • M. Jamei; A. Raeisi Isa Abadi; I. Ahmadianfar A Lax–Wendroff-IMPES scheme for a two-phase flow in porous media using interior penalty discontinuous Galerkin method, Numerical Heat Transfer, Part B: Fundamentals, Volume 75 (2019) no. 5, p. 325 | DOI:10.1080/10407790.2019.1627825
  • Mladen Jurak; Ivana Radišić; Ana Žgaljić Keko Two-phase Two-component Flow in Porous Media in Low Solubility Regime, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, p. 2019 | DOI:10.1137/18m1182206
  • Maicon R. Correa; Marcio A. Murad A new sequential method for three-phase immiscible flow in poroelastic media, Journal of Computational Physics, Volume 373 (2018), p. 493 | DOI:10.1016/j.jcp.2018.06.069
  • Prabir Daripa; Sourav Dutta Modeling and simulation of surfactant–polymer flooding using a new hybrid method, Journal of Computational Physics, Volume 335 (2017), p. 249 | DOI:10.1016/j.jcp.2017.01.038
  • R. Touzani; L. Alessio; D. Kuzmichev; R. Buoy Finite element solution for a coal-bed methane reservoir model, Mathematics and Computers in Simulation, Volume 137 (2017), p. 448 | DOI:10.1016/j.matcom.2017.01.005
  • Maicon R. Correa A semi-discrete central scheme for incompressible multiphase flow in porous media in several space dimensions, Mathematics and Computers in Simulation, Volume 140 (2017), p. 24 | DOI:10.1016/j.matcom.2017.01.008
  • Brahim Amaziane; Leonid Pankratov; Andrey Piatnitski An improved homogenization result for immiscible compressible two-phase flow in porous media, Networks Heterogeneous Media, Volume 12 (2017) no. 1, p. 147 | DOI:10.3934/nhm.2017006
  • D. Justinavicius; P. Poskas; A. Narkuniene Gas migration modelling in geological repository module in clay formation and sensitivity analysis, Engineering Geology, Volume 213 (2016), p. 158 | DOI:10.1016/j.enggeo.2016.09.007
  • B. Amaziane; L. Pankratov Homogenization of compressible two-phase two-component flow in porous media, Nonlinear Analysis: Real World Applications, Volume 30 (2016), p. 213 | DOI:10.1016/j.nonrwa.2016.01.006
  • Brahim Amaziane; Mladen Jurak; Ana Žgaljić Keko Modeling compositional compressible two-phase flow in porous media by the concept of the global pressure, Computational Geosciences, Volume 18 (2014) no. 3-4, p. 297 | DOI:10.1007/s10596-013-9362-2
  • Florian Caro; Bilal Saad; Mazen Saad Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 2, p. 191 | DOI:10.3934/dcdss.2014.7.191
  • MOSTAFA BENDAHMANE; ZIAD KHALIL; MAZEN SAAD CONVERGENCE OF A FINITE VOLUME SCHEME FOR GAS–WATER FLOW IN A MULTI-DIMENSIONAL POROUS MEDIUM, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 01, p. 145 | DOI:10.1142/s0218202513500498
  • Brahim Amaziane; Leonid Pankratov; Andrey Piatnitski Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 07, p. 1421 | DOI:10.1142/s0218202514500055
  • Brahim Amaziane; Mladen Jurak; Anja Vrbaški Homogenization results for a coupled system modelling immiscible compressible two-phase flow in porous media by the concept of global pressure, Applicable Analysis, Volume 92 (2013) no. 7, p. 1417 | DOI:10.1080/00036811.2012.682059
  • Brahim Amaziane; Leonid Pankratov; Andrey Piatnitski The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 5, p. 1217 | DOI:10.3934/dcdsb.2013.18.1217
  • Florian Caro; Bilal Saad; Mazen Saad Two-Component Two-Compressible Flow in a Porous Medium, Acta Applicandae Mathematicae, Volume 117 (2012) no. 1, p. 15 | DOI:10.1007/s10440-011-9648-0
  • Brahim Amaziane; Mladen Jurak; Ana Žgaljić Keko Numerical simulations of water–gas flow in heterogeneous porous media with discontinuous capillary pressures by the concept of global pressure, Journal of Computational and Applied Mathematics, Volume 236 (2012) no. 17, p. 4227 | DOI:10.1016/j.cam.2012.05.013
  • B. Amaziane; S. Antontsev; L. Pankratov Time of complete displacement of an immiscible compressible fluid by water in porous media: Application to gas migration in a deep nuclear waste repository, Nonlinear Analysis: Real World Applications, Volume 13 (2012) no. 5, p. 2144 | DOI:10.1016/j.nonrwa.2012.01.009
  • M.A. Sbai; M. Azaroual Numerical modeling of formation damage by two-phase particulate transport processes during CO2 injection in deep heterogeneous porous media, Advances in Water Resources, Volume 34 (2011) no. 1, p. 62 | DOI:10.1016/j.advwatres.2010.09.009
  • Brahim Amaziane; Mladen Jurak; Ana Žgaljić Keko An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media, Journal of Differential Equations, Volume 250 (2011) no. 3, p. 1685 | DOI:10.1016/j.jde.2010.09.008
  • R. di Chiara Roupert; G. Chavent; G. Schäfer Three-phase compressible flow in porous media: Total Differential Compatible interpolation of relative permeabilities, Journal of Computational Physics, Volume 229 (2010) no. 12, p. 4762 | DOI:10.1016/j.jcp.2010.03.013
  • Brahim Amaziane; Mladen Jurak; Ana Žgaljić Keko Modeling and Numerical Simulations of Immiscible Compressible Two-Phase Flow in Porous Media by the Concept of Global Pressure, Transport in Porous Media, Volume 84 (2010) no. 1, p. 133 | DOI:10.1007/s11242-009-9489-8
  • G. Chavent A fully equivalent global pressure formulation for three-phases compressible flows, Applicable Analysis, Volume 88 (2009) no. 10-11, p. 1527 | DOI:10.1080/00036810902994276
  • F.J. Valdes-Parada; A. Soria; J.A. Ochoa-Tapia; J. Alvarez-Ramirez On the effective density for compressible flow in porous media, Physica A: Statistical Mechanics and its Applications, Volume 388 (2009) no. 17, p. 3288 | DOI:10.1016/j.physa.2009.05.025

Cité par 28 documents. Sources : Crossref

Commentaires - Politique