Comptes Rendus
On the catastrophic bifurcation diagram of the truss arch system
Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 699-703.

Non-linear physical models depend on parameters. One of the important basic issues of bifurcation theory is the determination of the fixed points of the system under investigation. Nevertheless, the branching of solutions rarely occurs in the real applications for which imperfections tend to distort these sharp transitions. In the present Note, the truss arch system is considered as a simple example of the coexistence of disjoint branches, even in a perfect case. Moreover, it is shown that the emergence of the subcritical bifurcations of the non-shallow configuration is the result of the connection of these disjoint branches.

Les modèles des phénomènes physiques non linéaires dépendent de paramètres. Une première étape de la théorie des bifurcations est la détermination des points fixes du système étudié. Néanmoins, les intersections de branches de solutions sont rarement observées dans les applications réelles pour lesquelles des imperfections tendent à distordre ces transitions parfaites. Dans ce travail, le système plan de deux barres articulées, même sans imperfections, est considéré comme un exemple simple de coexistence de branches isolées pour une configuration géométrique large. De plus, on montre que l'émergence des bifurcations sous-critiques est le résultat de la connection de ces branches disjointes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.07.001
Keywords: Solids and structures, Bifurcation, Truss arch, Disjoint branch, Stability
Mot clés : Solides et structures, Bifurcation, Barres articulées, Branche disjointe, Stabilité

Yannick G. Cantin 1; Nathalie M.M. Cousin-Rittemard 2; Isabelle Gruais 2

1 Université de technologie de Belfort–Montbéliard, 90010 Belfort cedex, France
2 I.R.M.A.R., Université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France
@article{CRMECA_2008__336_9_699_0,
     author = {Yannick G. Cantin and Nathalie M.M. Cousin-Rittemard and Isabelle Gruais},
     title = {On the catastrophic bifurcation diagram of the truss arch system},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {699--703},
     publisher = {Elsevier},
     volume = {336},
     number = {9},
     year = {2008},
     doi = {10.1016/j.crme.2008.07.001},
     language = {en},
}
TY  - JOUR
AU  - Yannick G. Cantin
AU  - Nathalie M.M. Cousin-Rittemard
AU  - Isabelle Gruais
TI  - On the catastrophic bifurcation diagram of the truss arch system
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 699
EP  - 703
VL  - 336
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2008.07.001
LA  - en
ID  - CRMECA_2008__336_9_699_0
ER  - 
%0 Journal Article
%A Yannick G. Cantin
%A Nathalie M.M. Cousin-Rittemard
%A Isabelle Gruais
%T On the catastrophic bifurcation diagram of the truss arch system
%J Comptes Rendus. Mécanique
%D 2008
%P 699-703
%V 336
%N 9
%I Elsevier
%R 10.1016/j.crme.2008.07.001
%G en
%F CRMECA_2008__336_9_699_0
Yannick G. Cantin; Nathalie M.M. Cousin-Rittemard; Isabelle Gruais. On the catastrophic bifurcation diagram of the truss arch system. Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 699-703. doi : 10.1016/j.crme.2008.07.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.07.001/

[1] R. Thom Structural Stability and Morphogenesis, Addison-Wesley, 1989 (p. 404)

[2] M. Golubitsky; D. Shaeffer Singularities and Groups in Bifurcation Theory: I, Applied Mathematical Sciences, vol. 51, Springer-Verlag, 1985 (p. 463)

[3] B.J. Matkowsky; E.L. Reiss Singular perturbations of bifurcations, SIAM J. Appl. Math., Volume 33 (1977), pp. 230-255

[4] Q.S. Nguyen Stability and Nonlinear Solid Mechanics, John Wiley, 2000 (p. 398)

[5] S.S. Antman Non-Linear Problems of Elasticity, Springer, 2005 (p. 831)

[6] E.L. Allgower; K. Georg Numerical path following (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. 5, 1997, pp. 3-208 (818)

[7] E. Doedel; L.S. Tuckerman Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, IMA Volumes in Mathematics and Its Applications, vol. 119, Springer, 2000 (p. 471)

[8] H. Dang-Vu; C. Delcarte Bifurcations et chaos, Ellipses, 2000 (p. 447)

[9] Iu.A. Kuznetsov Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112, Springer-Verlag, 2004 (p. 631)

[10] I. Gruais; N.M.M. Cousin-Rittemard; H.A. Dijkstra A priori estimation of a global Homotopy Residue Continuation method, Numerical Functional Analysis and Optimization, Volume 26 (2005) no. 4–5, pp. 507-521

[11] N.M.M. Cousin-Rittemard; I. Gruais Continuation methods and disjoint equilibria, Revue Roumaine de Mathématiques Pures et Appliquées, Volume 52 (2007) no. 1, pp. 9-34

[12] G.H. Golub; C.F. Van Loan Matrix Computations, Johns Hopkins Studies in Mathematical Sciences, 1996 (p. 694)

[13] G.I. Barenblatt Scaling, Cambridge University Press, 2003 (p. 171)

[14] K. Ikeda; K. Murota Imperfect Bifurcation in Structures and Materials, Applied Mathematical Sciences, vol. 149, Springer-Verlag, New York, 2002 (p. 411)

Cited by Sources:

Comments - Policy