Comptes Rendus
Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary
[Approximation asymptotique des éléments propres du problème de Dirichlet pour le Laplacien dans un domaine à frontière fortement oscillante]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 693-698.

We study the asymptotic behavior of the eigenelements of the Dirichlet problem for the Laplacian in a bounded domain, a part of whose boundary, depending on a small parameter ε, is highly oscillating; the frequency of oscillations of the boundary is of order ε and the amplitude is fixed. We present second-order asymptotic approximations, as ε0, of the eigenelements in the case of simple eigenvalues of the limit problem.

Nous étudions le comportement asymptotique des éléments propres du problème de Dirichlet pour le Laplacien dans un domaine borné dont une partie de la frontière, dépendant d'un petit paramètre ε, est fortement oscillante ; la fréquence des oscillations est d'ordre ε et leur amplitude est fixe. Nous présentons des approximations asymptotiques d'ordre deux des éléments propres dans le cas de valeurs propres simples du problème limite.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2008.06.008
Keywords: Asymptotic expansion, Spectral problem, Oscillating boundary
Mots-clés : Développement asymptotique, Problème spectral, Frontière oscillante

Youcef Amirat 1 ; Gregory A. Chechkin 2, 3 ; Rustem R. Gadyl'shin 4

1 Laboratoire de mathématiques, CNRS UMR 6620, Université Blaise-Pascal, 63177 Aubière cedex, France
2 Department of Differential Equations, Faculty of Mechanics and Mathematics, Moscow Lomonosov State University, Moscow 119991, Russia
3 Narvik University College, Postboks 385, 8505 Narvik, Norway
4 Department of Mathematical Analysis, Faculty of Physics and Mathematics, Bashkir State Pedagogical University, Ufa 450000, Russia
@article{CRMECA_2008__336_9_693_0,
     author = {Youcef Amirat and Gregory A. Chechkin and Rustem R. Gadyl'shin},
     title = {Asymptotics of the solution of a {Dirichlet} spectral problem in a junction with highly oscillating boundary},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {693--698},
     publisher = {Elsevier},
     volume = {336},
     number = {9},
     year = {2008},
     doi = {10.1016/j.crme.2008.06.008},
     language = {en},
}
TY  - JOUR
AU  - Youcef Amirat
AU  - Gregory A. Chechkin
AU  - Rustem R. Gadyl'shin
TI  - Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 693
EP  - 698
VL  - 336
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2008.06.008
LA  - en
ID  - CRMECA_2008__336_9_693_0
ER  - 
%0 Journal Article
%A Youcef Amirat
%A Gregory A. Chechkin
%A Rustem R. Gadyl'shin
%T Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary
%J Comptes Rendus. Mécanique
%D 2008
%P 693-698
%V 336
%N 9
%I Elsevier
%R 10.1016/j.crme.2008.06.008
%G en
%F CRMECA_2008__336_9_693_0
Youcef Amirat; Gregory A. Chechkin; Rustem R. Gadyl'shin. Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary. Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 693-698. doi : 10.1016/j.crme.2008.06.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.06.008/

[1] Y. Amirat; G.A. Chechkin; R.R. Gadyl'shin Asymptotics for eigenelements of Laplacian in domain with oscillating boundary: Multiple eigenvalues, Appl. Anal., Volume 86 (2007) no. 7, pp. 873-897

[2] S.A. Nazarov Binomial asymptotic behavior of solutions of spectral problems with singular perturbations, Mat. Sb., Volume 181 (1990) no. 3, pp. 291-320 (Translation in Math. USSR-Sb., 69, 2, 1991, pp. 307-340)

[3] T.A. Mel'nyk On free vibrations of a thick periodic junction with concentrated masses on the fine rods, Nonlinear Oscillations, Volume 2 (1999), pp. 511-523

[4] A. Gaudiello Asymptotic behavior of non-homogeneous Neumann problems in domains with oscillating boundary, Ricerche Mat., Volume 43 (1994), pp. 239-292

[5] T.A. Mel'nik; S.A. Nazarov Asymptotic behavior of the solution of the Neumann spectral problem in a domain of “Tooth Comb” Type, J. Math. Sci. (New York), Volume 85 (1997) no. 6, pp. 2326-2346

[6] I. Babuška; R. Vyborny Continuous dependence of eigenvalues on the domains, Czech. Math. J., Volume 15 (1965), pp. 169-178

[7] W. Jäger; A. Mikelić On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, Volume 170 (2001), pp. 96-122

[8] M. Lobo-Hidalgo; E. Sánchez-Palencia Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites, Comm. Partial Differential Equations, Volume 4 (1979), pp. 1085-1098

[9] Y. Amirat; G.A. Chechkin; R.R. Gadyl'shin Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary, Zh. Vychisl. Mat. i Mat. Fiz., Volume 46 (2006) no. 1, pp. 102-115 (Translation in Comput. Math. Math. Phys., 46, 1, 2006, pp. 97-110)

[10] A.M. Il'in Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems, Amer. Math. Soc., Providence, RI, 1992

  • Gaziz Faizullaevich Azhmoldayev; Kuanysh Abdrakhmanovich Bekmaganbetov; Gregory Aleksandrovich Chechkin; Vladimir Victorovich Chepyzhov Homogenization of attractors to reaction - diffusion equations in domains with rapidly oscillating boundary: supercritical case, Ufimskii Matematicheskii Zhurnal, Volume 17 (2025) no. 2, p. 91 | DOI:10.13108/2025-17-2-91
  • Gaziz F. Azhmoldaev; Kuanysh A. Bekmaganbetov; Gregory A. Chechkin; Vladimir V. Chepyzhov Homogenization of attractors to reaction-diffusion equations in domains with rapidly oscillating boundary: critical case, Networks and Heterogeneous Media, Volume 19 (2024) no. 3, pp. 1381-1401 | DOI:10.3934/nhm.2024059 | Zbl:8010612
  • A. G. Chechkina Weakly singular Steklov condition in the multidimensional case, Doklady Mathematics, Volume 105 (2022) no. 2, pp. 127-130 | DOI:10.1134/s1064562422020090 | Zbl:1494.35021
  • A. G. Chechkina Operator estimates for the Steklov problem in an unbounded domain with rapidly changing conditions on the boundary, Doklady Mathematics, Volume 104 (2021) no. 1, pp. 205-207 | DOI:10.1134/s1064562421040049 | Zbl:1477.35108
  • Aleksandra G. Chechkina; Ciro D'Apice; Umberto De Maio Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition, Journal of Computational and Applied Mathematics, Volume 376 (2020), p. 11 (Id/No 112802) | DOI:10.1016/j.cam.2020.112802 | Zbl:1437.35517
  • Aleksandra G. Chechkina; Ciro D'Apice; Umberto De Maio Rate of convergence of eigenvalues to singularly perturbed Steklov-type problem for elasticity system, Applicable Analysis, Volume 98 (2019) no. 1-2, pp. 32-44 | DOI:10.1080/00036811.2017.1416104 | Zbl:1414.35020
  • T A Mel'nyk; G A Chechkin Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses, Izvestiya: Mathematics, Volume 79 (2015) no. 3, p. 467 | DOI:10.1070/im2015v079n03abeh002751
  • Taras Anatol'evich Mel'nik; Gregory Aleksandrovich Chechkin Собственные колебания густых каскадных соединений со "сверхтяжелыми" концентрированными массами, Известия Российской академии наук. Серия математическая, Volume 79 (2015) no. 3, p. 41 | DOI:10.4213/im8238
  • D.-H. Nguyen; H.-T. Le; H. Le Quang; Q.-C. He Determination of the effective conductive properties of composites with curved oscillating interfaces by a two-scale homogenization procedure, Computational Materials Science, Volume 94 (2014), p. 150 | DOI:10.1016/j.commatsci.2014.03.014
  • T. P. Chechkina Averaging in cascade junctions with a “wide” transmission domain, Journal of Mathematical Sciences (New York), Volume 190 (2013) no. 1, pp. 157-169 | DOI:10.1007/s10958-013-1251-7 | Zbl:1277.74063
  • H. Le Quang; Q.-C. He; H.-T. Le Multiscale Homogenization of Elastic Layered Composites with Unidirectionally Periodic Rough Interfaces, Multiscale Modeling Simulation, Volume 11 (2013) no. 4, p. 1127 | DOI:10.1137/120888971
  • Gregory A. Chechkin; Taras A. Mel'nyk Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses, Applicable Analysis, Volume 91 (2012) no. 6, pp. 1055-1095 | DOI:10.1080/00036811.2011.602634 | Zbl:1254.35168
  • G. A. Chechkin; C. D'Apice; U. De Maio On the rate of convergence of solutions in domain with periodic multilevel oscillating boundary, Mathematical Methods in the Applied Sciences, Volume 33 (2010) no. 17, pp. 2019-2036 | DOI:10.1002/mma.1311 | Zbl:1205.35020
  • Youcef Amirat; Gregory A. Chechkin; Rustem R. Gadyl'shin Asymptotic approximation of eigenelements of the Dirichlet problem for the Laplacian in a domain with shoots, Mathematical Methods in the Applied Sciences, Volume 33 (2010) no. 7, pp. 811-830 | DOI:10.1002/mma.1193 | Zbl:1200.35020
  • Pham Chi Vinh; Do Xuan Tung Homogenized equations of the linear elasticity in two-dimensional domains with very rough interfaces, Mechanics Research Communications, Volume 37 (2010) no. 3, pp. 285-288 | DOI:10.1016/j.mechrescom.2010.02.006 | Zbl:1272.74044
  • G. A. Chechkin; T. P. Chechkina; C. D'Apice; U. de Maio; T. A. Mel'nyk Homogenization of 3D thick cascade junction with a random transmission zone periodic in one direction, Russian Journal of Mathematical Physics, Volume 17 (2010) no. 1, pp. 35-55 | DOI:10.1134/s1061920810010048 | Zbl:1196.35035
  • G. A. Chechkin; T. P. Chechkina; C. D'Apice; U. de Maio; T. A. Mel'nyk Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone, Applicable Analysis, Volume 88 (2009) no. 10-11, pp. 1543-1562 | DOI:10.1080/00036810902994268 | Zbl:1180.35071
  • T. A. Mel'nik; G. A. Chechkin; T. P. Chechkina Convergence theorems for solutions and energy functionals of boundary value problems in thick multilevel junctions of a new type with perturbed Neumann conditions on the boundary of thin rectangles, Journal of Mathematical Sciences (New York), Volume 159 (2009) no. 1, pp. 113-132 | DOI:10.1007/s10958-009-9431-1 | Zbl:1207.35045

Cité par 18 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: