A periodic elastic waveguide is found out such that the continuous spectrum of the elasticity problem operator contains a gap. This effect can be used for constructing elastic wave filters.
On exhibe un guide périodique d'onde élastique tel que le spectre continu de l'opérateur du problème élastique contienne un gap. Cet effet peut être utilisé pour construire des filtres d'ondes elastiques.
Accepted:
Published online:
Mot clés : Guide périodique d'onde élastique, Gap dans un spectre continu
Sergey A. Nazarov 1
@article{CRMECA_2008__336_10_751_0, author = {Sergey A. Nazarov}, title = {A gap in the continuous spectrum of an elastic waveguide}, journal = {Comptes Rendus. M\'ecanique}, pages = {751--756}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2008}, doi = {10.1016/j.crme.2008.07.002}, language = {en}, }
Sergey A. Nazarov. A gap in the continuous spectrum of an elastic waveguide. Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 751-756. doi : 10.1016/j.crme.2008.07.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.07.002/
[1] Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2001
[2] Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math., Volume 56 (1996), pp. 68-88 (II. Two-dimensional photonic crystals SIAM J. Appl. Math., 56, 1996, pp. 1561-1620)
[3] Spectral properties of the periodic media inlarge coupling limit, Comm. Partial Differential Equations, Volume 25 (2000), pp. 1445-1470
[4] Expansions in eigenfunctions of an equation with periodic coefficients, Dokl. Acad. Nauk SSSR, Volume 73 (1950), pp. 1117-1120
[5] Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993
[6] Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994
[7] Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, RI, 1969
[8] Elliptic boundary value problems with periodic coefficients in a cylinder, Math. USSR Izvestija, Volume 18 (1982) no. 1, pp. 89-98
[9] Les méthodes in théorie des équations elliptiques, Masson–Academia, Paris–Prague, 1967
[10] Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surveys, Volume 43 (1988) no. 5, pp. 65-119
[11] Korn's inequalities for elastic junctions of massive bodies, thin plates and rods, Russian Math. Surveys, Volume 63 (2008) no. 1, pp. 143-217
[12] Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publ. Co., Dordrecht, 1987
[13] Asymptotics of infrequencies of an elastic body with a heavy and hard peak-shaped inclusion, C. R. Mecanique, Volume 335 (2007) no. 12, pp. 757-762
Cited by Sources:
⁎ The author gratefully acknowledges the support by N.W.O., the Netherlands Organization for Scientific Research.
Comments - Policy