Comptes Rendus
An approximate yield criterion for anisotropic porous media
Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 685-692.

We derive a new yield function for materials containing spheroidal voids embedded in a perfectly-plastic anisotropic Hill-type matrix. Using approximate limit-analysis and a restricted set of trial velocity fields, analytical yield loci are derived for a hollow, spheroidal volume element containing a confocal spheroidal void. Alternatively, the yield loci are determined through numerical limit-analysis, i.e., employing a larger set of velocity fields. The numerical results are quasi-exact for transversely isotropic materials under axisymmetric loading. We show that an enhanced description of admissible microscopic deformation fields results in a close agreement between analytical and numerical macroscopic yield loci.

On développe un nouveau critère de plasticité pour matériaux anisotropes contenant des cavités ellipsoïdales dans une matrice parfaitement plastique de type Hill. Le critère homogenéisé est obtenu par analyse limite approchée d'un volume élémentaire creux de forme ellipsoïdale contenant une cavité ellipsoïdale confocale, en utilisant un nombre réduit de champs de vitesse. Par ailleurs, on détermine numériquement les surfaces de charges en utilisant un ensemble plus large de champs de vitesse. Les résultats numériques sont quasi-exacts dans le cas de matériaux isotropes transverses sous chargement axisymétrique. On montre que la prise en compte de nouveaux champs admissibles de déformation améliore considérablement l'accord entre formes analytique et numérique du critère de plasticité macroscopique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.07.008
Keywords: Porous media, Ductile metals, Void growth, Damage, Non-spherical voids, Micromechanics, Homogenization
Mot clés : Milieux poreux, Métaux ductiles, Croissance de cavité, Endommagement, Cavités non-sphériques, Micromécanique, Homogénéisation

Shyam M. Keralavarma 1; A. Amine Benzerga 1

1 Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA
@article{CRMECA_2008__336_9_685_0,
     author = {Shyam M. Keralavarma and A. Amine Benzerga},
     title = {An approximate yield criterion for anisotropic porous media},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {685--692},
     publisher = {Elsevier},
     volume = {336},
     number = {9},
     year = {2008},
     doi = {10.1016/j.crme.2008.07.008},
     language = {en},
}
TY  - JOUR
AU  - Shyam M. Keralavarma
AU  - A. Amine Benzerga
TI  - An approximate yield criterion for anisotropic porous media
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 685
EP  - 692
VL  - 336
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2008.07.008
LA  - en
ID  - CRMECA_2008__336_9_685_0
ER  - 
%0 Journal Article
%A Shyam M. Keralavarma
%A A. Amine Benzerga
%T An approximate yield criterion for anisotropic porous media
%J Comptes Rendus. Mécanique
%D 2008
%P 685-692
%V 336
%N 9
%I Elsevier
%R 10.1016/j.crme.2008.07.008
%G en
%F CRMECA_2008__336_9_685_0
Shyam M. Keralavarma; A. Amine Benzerga. An approximate yield criterion for anisotropic porous media. Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 685-692. doi : 10.1016/j.crme.2008.07.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.07.008/

[1] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech., Volume 99 (1977), pp. 2-15

[2] G. Perrin, Contribution à l'étude théorique de la rupture ductile des métaux, PhD thesis, École Polytechnique, 1992

[3] J.B. Leblond Mécanique de la rupture fragile et ductile, Hermes Science Publications, Lavoisier, 2003

[4] A.A. Benzerga; J. Besson; A. Pineau Modèle couplé comportement–endommagement ductile de tôles anisotropes (B. Peseux et al., eds.), Actes du 3ème Colloque National en Calcul des Structures, Presses Académiques de l'Ouest, 1997, pp. 673-678

[5] A.A. Benzerga, Rupture ductile des tôles anisotropes, PhD thesis, École Nationale Supérieure des Mines de Paris, 2000

[6] A.A. Benzerga; J. Besson Plastic potentials for anisotropic porous solids, Eur. J. Mech., Volume 20 (2001) no. 3, pp. 397-434

[7] M. Gologanu; J.-B. Leblond; J. Devaux Approximate models for ductile metals containing non-spherical voids – case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, Volume 41 (1993) no. 11, pp. 1723-1754

[8] M. Gologanu; J.-B. Leblond; J. Devaux Approximate models for ductile metals containing non-spherical voids – case of axisymmetric oblate ellipsoidal cavities, J. Eng. Mat. Tech., Volume 116 (1994), pp. 290-297

[9] M. Gologanu; J.-B. Leblond; G. Perrin; J. Devaux Recent extensions of Gurson's model for porous ductile metals (P. Suquet, ed.), Continuum Micromechanics, CISM Lectures Series, Springer, New York, 1997, pp. 61-130

[10] M. Gologanu, Étude de quelques problèmes de rupture ductile des métaux, PhD thesis, Université Paris 6, 1997

[11] M. Garajeu; J.C. Michel; P. Suquet A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids, Comput. Methods Appl. Mech. Engrg., Volume 183 (2000), pp. 223-246

[12] V. Monchiet; C. Gruescu; E. Charkaluk; D. Kondo Approximate yield criteria for anisotropic metals with prolate or oblate voids, C. R. Mecanique, Volume 334 (2006), pp. 431-439

[13] V. Monchiet; O. Cazacu; E. Charkaluk; D. Kondo Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, Int. J. Plasticity, Volume 24 (2008), pp. 1158-1189

[14] J. Mandel Contribution théorique à l'étude de l'écrouissage et des lois de l'écoulement plastique, 11th International Congress on Applied Mechanics, Springer, Berlin, 1964, pp. 502-509

[15] R. Hill The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, Volume 15 (1967), pp. 79-95

[16] P. Suquet, Plasticité et homogénéisation, Thèse d'Etat, Université Pierre et Marie Curie, Paris VI, 1982

[17] R. Hill A theory of yielding and plastic flow of anisotropic solids, Proc. Roy. Soc. London A, Volume 193 (1948), pp. 281-297

[18] B.J. Lee; M.E. Mear Axisymmetric deformation of power–law solids containing a dilute concentration of aligned spheroidal voids, J. Mech. Phys. Solids, Volume 40 (1992) no. 8, pp. 1805-1836

[19] A.A. Benzerga; J. Besson; A. Pineau Anisotropic ductile fracture. Part I: Experiments, Acta Mater., Volume 52 (2004), pp. 4623-4638

Cited by Sources:

Comments - Policy