In practice, two surfaces statically equivalent can be issued from two different manufacturing processes (grinding, belt finishing, honing, …) or obtained using different working process variables (abrasives grits size, contact pressure, …). The common tools and different norms used for industrial surface characterization (ISO 4288, ISO 12085, …) have the main limit of discriminating them through their process signatures. This Note introduces a multiscale decomposition method of the surface topography based on continuous wavelets transform. This approach allows the determination of the multi-scale transfer function of the morphological modification on the surface topography after a finishing process. This technique has been successfully applied to discriminate two surfaces obtained by the belt-finishing process. Moreover, it makes it possible to connect the surface topography modification to the physical and tribological mechanisms of the process (ploughing, cutting, …).
Dans la pratique, deux surfaces statiquement équivalentes peuvent être usinées à partir de deux différents procédés de fabrication (rectification, toilage, rodage, …) ou obtenues à des conditions différentes du procédé (taille de grains abrasifs, la pression de contact, …). Les différents outils communs et les normes utilisées pour la caractérisation de surface industrielle (ISO 4288, ISO 12085, …) présentent la principale limite de les discriminer à travers la signature de leurs procédé. Cet article introduit une méthode de décomposition multiéchelle de la topographie de surface basé sur la transformée en ondelettes continue. Cette approche permet de déterminer une signature multiéchelle de la modification morphologique de la topographie de la surface après un processus de finition. Cette technique a été appliquée avec succès pour la discrimination de deux surfaces obtenues par toilage. Elle permet, en plus, de faire le lien entre la topographie de la surface obtenue aux mécanismes physiques et tribologiques du procédé (labourage, coupe, …).
Accepted:
Published online:
Mots-clés : Génie des matériaux, Caractérisation multiéchelle, Transformée par ondelettes continues 2D, Signature du procédé, Finition par abrasion
Sabeur Mezghani 1; Mohamed El Mansori 1; Abdellah Massaq 2; Patrick Ghidossi 1
@article{CRMECA_2008__336_10_794_0, author = {Sabeur Mezghani and Mohamed El Mansori and Abdellah Massaq and Patrick Ghidossi}, title = {Correlation between surface topography and tribological mechanisms of the belt-finishing process using multiscale finishing process signature}, journal = {Comptes Rendus. M\'ecanique}, pages = {794--799}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2008}, doi = {10.1016/j.crme.2008.09.002}, language = {en}, }
TY - JOUR AU - Sabeur Mezghani AU - Mohamed El Mansori AU - Abdellah Massaq AU - Patrick Ghidossi TI - Correlation between surface topography and tribological mechanisms of the belt-finishing process using multiscale finishing process signature JO - Comptes Rendus. Mécanique PY - 2008 SP - 794 EP - 799 VL - 336 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2008.09.002 LA - en ID - CRMECA_2008__336_10_794_0 ER -
%0 Journal Article %A Sabeur Mezghani %A Mohamed El Mansori %A Abdellah Massaq %A Patrick Ghidossi %T Correlation between surface topography and tribological mechanisms of the belt-finishing process using multiscale finishing process signature %J Comptes Rendus. Mécanique %D 2008 %P 794-799 %V 336 %N 10 %I Elsevier %R 10.1016/j.crme.2008.09.002 %G en %F CRMECA_2008__336_10_794_0
Sabeur Mezghani; Mohamed El Mansori; Abdellah Massaq; Patrick Ghidossi. Correlation between surface topography and tribological mechanisms of the belt-finishing process using multiscale finishing process signature. Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 794-799. doi : 10.1016/j.crme.2008.09.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.09.002/
[1] Multiscale analysis of abrasion damage, Mecanique et Industries, Volume 7 (2006) no. 1, pp. 13-20
[2] Trends is surface roughness, International Journal of Machine Tools and Manufacture, Volume 38 (1998) no. 5–6, pp. 405-411
[3] Comprehensive study of parameters for characterizing three-dimensional surface topography: Parameters for characterizing amplitude and some functional properties, Wear, Volume 178 (1994) no. 1, pp. 29-44
[4] Comprehensive study of parameters for characterizing three-dimensional surface topography: Parameters for characterizing spatial and hybrid properties, Wear, Volume 178 (1994) no. 1, pp. 45-60
[5] Multiscale features analysis of 3D surface topography based on mathematical morphology, in: Sixth Intl. Symp. on Instrumentation and Control Technology, Proc. SPIE, Volume 6357 (2006), p. 63572
[6] Multiscale analysis of engineering surfaces, International Journal of Machine Tools and Manufacture, Volume 35 (1995) no. 2, pp. 231-238
[7] Morphological characterization of engineered surfaces by wavelet transform, International Journal of Machine Tools and Manufacture, Volume 38 (1998) no. 5–6, pp. 581-589
[8] Characterization of surface topography by continuous wavelet transform, Acta Physica Superficierum, Volume IV (2001), pp. 1-23
[9] The effect of belt finishing process variables on the topography of finished surfaces, Tribology Transactions, Volume 51 (2008), pp. 413-421
[10] Identification of Manufacturing Signature by 2D Wavelet Decomposition, Wear, Volume 264 (2008) no. 5–6, pp. 480-485
[11] Effects of grit size on abrasion with coated abrasives, Wear, Volume 40 (1976), pp. 223-235
[12] Tribology of Abrasive Machining Processes, William Andrew Publishing, 2004
[13] Principles of Abrasive Processing, Oxford Science Publications, Clarendon Press, Oxford, 1996
[14] Experimental investigation of the superfinishing process, Wear, Volume 185 (1995), pp. 173-182
[15] The deterioration of bonded abrasive papers during the wear of metals, Wear, Volume 132 (1989), pp. 77-97
Cited by Sources:
Comments - Policy