The Asymptotic Numerical Method (ANM) allows one to compute solution branches of sufficiently smooth non-linear PDE problems using truncated Taylor expansions. The Diamant approach of the ANM has been proposed for hiding definitively the differentiation aspects to the user. In this Note, this significant improvement in terms of genericity is exploited to compute the sensitivity of ANM solutions with respect to modelling parameters. The differentiation in the parameters is discussed at both the equation and code level to highlight the Automatic Differentiation (AD) purposes. A numerical example proves the interest of such techniques for a generic and efficient implementation of sensitivity computations.
La Méthode Asymptotique Numérique (MAN) permet de calculer des branches de solutions de problèmes d'EDP suffisamment réguliers à l'aide de séries de Taylor tronquées. L'approche Diamant de la MAN a été proposée pour cacher définitivement les aspects différentiation à l'utilisateur. Dans cette Note, cette amélioration significative en terme de généricité est exploitée pour calculer la sensibilité des solutions MAN par rapport aux paramètres de modélisation. La différentiation en les paramètres est discutée au niveau des équations et du code pour souligner les aspects Différentiation Automatique (DA). Un exemple numérique prouve l'intérêt de ces techniques pour l'implémentation générique et efficace de calculs de sensibilité.
Accepted:
Published online:
Mots-clés : Continuation, MAN, Diamant, Analyse de sensibilité
Isabelle Charpentier 1
@article{CRMECA_2008__336_10_788_0, author = {Isabelle Charpentier}, title = {Sensitivity of solutions computed through the {Asymptotic} {Numerical} {Method}}, journal = {Comptes Rendus. M\'ecanique}, pages = {788--793}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2008}, doi = {10.1016/j.crme.2008.09.003}, language = {en}, }
Isabelle Charpentier. Sensitivity of solutions computed through the Asymptotic Numerical Method. Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 788-793. doi : 10.1016/j.crme.2008.09.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.09.003/
[1] The nonlinear perturbation analysis of discrete structural systems, International Journal of Solids and Structures, Volume 4 (1968), pp. 757-768
[2] Asymptotic numerical method and Padé approximants for non-linear elastic structures, International Journal for Numerical Methods in Engineering, Volume 37 (1994), pp. 1187-1213
[3] Méthode asymptotique numérique, Hermes Science Publications, 2007 (p. 298)
[4] Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Frontiers in Appl. Math., vol. 11, SIAM, Philadelphia, 2000 (p. 369)
[5] Différentiation automatique de la Méthode Asymptotique Numérique Typée : l'approche Diamant, Comptes Rendus Mecanique, Volume 336 (2008), pp. 336-340
[6] The diamant approach for an efficient automatic differentiation of the asymptotic numerical method (C.H. Bischof; H.M. Bücker; P. Hovland; U. Naumann; J. Utke, eds.), Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering, vol. 64, 2008, pp. 139-149
[7] Y. Koutsawa, I. Charpentier, E.M. Daya, M. Cherkaoui, A generic approach for the solution of nonlinear residual equations. Part I: The Diamant toolbox, Computer Methods in Applied Mechanics and Engineering, | DOI
[8] L. Hascoët, V. Pascual, TAPENADE 2.1 user's guide, Rapport technique de l'INRIA RT-0300, 2004
[9] Numerical analysis and control of bifurcation problems (I). Bifurcation in finite dimensions, International Journal of Bifurcation and Chaos, Volume 1 (1991), pp. 493-520
[10] How to compute fast a function and all its derivatives, a variation on the theorem of Baur–Strassen, SIGACT News, Volume 16 (1985), pp. 60-62
[11] Efficient adjoint derivatives: Application to the atmospheric model MESO-NH, Optimization Methods and Software, Volume 13 (2000), pp. 35-63
Cited by Sources:
Comments - Policy