Comptes Rendus
Electro-osmosis in gels: Application to Agar-Agar
Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 782-787.

Widely used in food- and bio-engineering as a reference material, Agar-Agar gel is the focus of an experimental investigation concerning the electro-osmosis phenomenon. After presenting the experimental methods, one trial is discussed in detail. A fair reproducibility of results is obtained, and the averaged electro-osmotic permeability is provided. This value lies in the range generally measured on various kind of soils, even if Agar-Agar gel does not share any micro-structural characteristics with soils.

Largement utilisé en bio-ingénierie comme un matériau modèle, le gel d'Agar-Agar est l'objet d'une étude expérimentale relative au phénomène d'électro-osmose. Après la présentation des méthodes expérimentales, un essai est discuté en détail. Une bonne reproductibilité des résultats est observée, et une valeur moyenne de la perméabilité électro-osmotique du gel d'Agar-Agar est proposée. Ce résultat est en accord avec la plage de valeurs mesurées sur une large gamme de géo-matériaux, même si les caractéristiques micro-structurales du gel d'Agar-Agar sont très éloignées de celles d'un sol.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.09.004
Keywords: Porous media, Agar-Agar gel, electro-osmosis
Mot clés : Milieu poreux, gel d'Agar-Agar, électro-osmose

Fabien Cherblanc 1; Jérôme Boscus 1; Jean-Claude Bénet 1

1 Laboratoire de mécanique et génie civil, UMR CNRS 5508, Université Montpellier 2, CC 048, place Eugène Bataillon, 34095 Montpellier, France
@article{CRMECA_2008__336_10_782_0,
     author = {Fabien Cherblanc and J\'er\^ome Boscus and Jean-Claude B\'enet},
     title = {Electro-osmosis in gels: {Application} to {Agar-Agar}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {782--787},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2008},
     doi = {10.1016/j.crme.2008.09.004},
     language = {en},
}
TY  - JOUR
AU  - Fabien Cherblanc
AU  - Jérôme Boscus
AU  - Jean-Claude Bénet
TI  - Electro-osmosis in gels: Application to Agar-Agar
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 782
EP  - 787
VL  - 336
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2008.09.004
LA  - en
ID  - CRMECA_2008__336_10_782_0
ER  - 
%0 Journal Article
%A Fabien Cherblanc
%A Jérôme Boscus
%A Jean-Claude Bénet
%T Electro-osmosis in gels: Application to Agar-Agar
%J Comptes Rendus. Mécanique
%D 2008
%P 782-787
%V 336
%N 10
%I Elsevier
%R 10.1016/j.crme.2008.09.004
%G en
%F CRMECA_2008__336_10_782_0
Fabien Cherblanc; Jérôme Boscus; Jean-Claude Bénet. Electro-osmosis in gels: Application to Agar-Agar. Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 782-787. doi : 10.1016/j.crme.2008.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.09.004/

[1] J.M. Huyghe; S.C. Cowin Preface on physicochemical and electromechanical interactions in porous media, Transport in Porous Media, Volume 50 (2003), pp. 1-3

[2] J.K. Mitchell Fundamentals of Soil Behavior, John Wiley & Sons, New York, 1993

[3] C. Moyne; M. Murad Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure, International Journal of Solids and Structures, Volume 39 (2002), pp. 6159-6190

[4] L. Casagrande Electro-osmosis in soils, Géotechnique, Volume 1 (1949), pp. 159-177

[5] G.D.C. Kuiken Thermodynamics of Irreversible Processes, John Wiley & Sons, New York, 1994

[6] A.N. Alshawabkeh; Y.B. Acar Electrokinetic Remediation. II: Theoretical Model, Journal of Geotechnical Engineering, Volume 122 (1996), pp. 186-196

[7] J. Virkutyte; M. Sillanpää; P. Latostenmaa Electrokinetic soil remediation—Critical overview, Science of the Total Environment, Volume 289 (2002), pp. 97-121

[8] A.T. Yeung; S. Datla Fundamentals formulation of electrokinetic extraction of contaminants from soil, Canadian Geotechnical Journal, Volume 32 (1995), pp. 569-583

[9] J. Chen; G. Ma Modelling deformation behaviour of polyelectrolyte gels under chemo-electro-mechanical coupling effects, International Journal of Numerical Methods in Engineering, Volume 68 (2006), pp. 1052-1071

[10] W.Y. Gu; W.M. Lai; V.C. Mow Transport of multi-electrolytes in charged hydrated biological soft tissues, Transport in Porous Media, Volume 34 (1999), pp. 143-157

[11] K.C. Labropoulos; D.E. Niesz; S.C. Danforth; P.G. Kevrekidis Dynamic rheology of agar gels: Theory and experiments. Part II. Gelation behavior of agar sols and fitting of a theoretical rheological model, Carbohydrate Polymers, Volume 50 (2002), pp. 407-415

[12] I. Mrani; J.-C. Bénet; G. Fras; Z. Zrikem Two dimensional simulation of dehydration of highly deformable gel: Moisture content, stress and strain fields, Drying Technology, Volume 15 (1997), pp. 2165-2193

[13] N. Pernodet; M. Maaloum; B. Tinland Pore size of agarose gels by atomic force microscopy, Electrophoresis, Volume 18 (1997), pp. 55-58

[14] P. Aymard; D.R. Martin; K. Plucknett; T.J. Foster; A.H. Clark; I.T. Norton Influence of thermal history on the structural and mechanical properties of agarose gels, Biopolymers, Volume 59 (2001), pp. 131-144

[15] L.M. Vane; G.M. Zang Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes, Journal of Hazardous Materials, Volume 55 (1997), pp. 1-22

[16] I. Lakatos; J. Lakatos-Szabó Diffusion of H+, H2O and D2O in polymer/silicate gels, Colloids and Surfaces A: Physicochemistry Engineering Aspects, Volume 246 (2004), pp. 9-19

Cited by Sources:

Comments - Policy