A new evolution equation coherent up to order one in the long wave parameter is derived to describe the non-linear behavior of a thin film flow down an inclined plane of a power law fluid for small to moderate Reynolds numbers. The method we have used combines the lubrication theory and the weighted residual approach, with a suitable weighting function. That approach was first developed by Ruyer-Quil and Manneville (2000) for Newtonian fluids. The model has the advantages of both the Shkadov type approach far from criticality and that of Benney close to criticality.
Un modèle non linéaire, cohérent à l'ordre un et combinant les avantages de l'approche asymptotique de Benney et de la méthode intégrale de Shkadov est proposée pour décrire le comportement d'un film mince de fluide en loi de puissance pour des nombres de Reynolds petits et modérés. La procédure utilisée est inspirée de la méthode des résidus pondérés développée par Ruyer-Quil et Manneville (2000) dans le cadre des fluides Newtoniens.
Accepted:
Published online:
Mots-clés : Mécanique des fluids, Modèle de Shkadov, Écoulement de film mince de fluide
Mustapha Amaouche 1; Amar Djema 1; L. Bourdache 1
@article{CRMECA_2009__337_1_48_0, author = {Mustapha Amaouche and Amar Djema and L. Bourdache}, title = {A modified {Shkadov's} model for thin film flow of a power law fluid over an inclined surface}, journal = {Comptes Rendus. M\'ecanique}, pages = {48--52}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2009}, doi = {10.1016/j.crme.2009.01.002}, language = {en}, }
TY - JOUR AU - Mustapha Amaouche AU - Amar Djema AU - L. Bourdache TI - A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface JO - Comptes Rendus. Mécanique PY - 2009 SP - 48 EP - 52 VL - 337 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2009.01.002 LA - en ID - CRMECA_2009__337_1_48_0 ER -
Mustapha Amaouche; Amar Djema; L. Bourdache. A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface. Comptes Rendus. Mécanique, Volume 337 (2009) no. 1, pp. 48-52. doi : 10.1016/j.crme.2009.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.01.002/
[1] Long waves on liquid films, J. Math. Phys., Volume 45 (1966), pp. 150-155
[2] Surface equation of falling film flows with moderate Reynolds number and large by finite Weber number, Phys. Fluids, Volume 11 (1999), pp. 3247-3269
[3] Low dimensional models for vertically falling viscous films, Phys. Rev. Lett., Volume 90 (2003) no. 15, pp. 1-3
[4] Improved modeling of flows down inclined planes, Eur. Phys. J. B, Volume 15 (2000), pp. 357-369
[5] Wave conditions in the flow of thin layer of a viscous liquid under the action of gravity, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, Volume 1 (1967), pp. 43-51
[6] Comment on ‘Low dimensional models for vertically falling viscous films’, Phys. Rev. Lett. (2004), p. 199401
[7] Finite amplitude long-wave instability of power-law liquid films, Int. J. Non-Lin. Mech., Volume 35 (2000), pp. 769-777
[8] Thin-film flow of a power-law liquid falling down an inclined plate, J. Non-Newtonian Fluid Mech., Volume 122 (2004), pp. 69-78
[9] Waves on the surface of a falling power-law fluid film, Int. J. Non-Lin. Mech., Volume 38 (2003), pp. 21-38
[10] Bifurcation analysis of the travelling waves on a falling power-law fluid film, J. Non-Newtonian Fluid Mech., Volume 141 (2007), pp. 128-137
Cited by Sources:
Comments - Policy