Comptes Rendus
A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface
Comptes Rendus. Mécanique, Volume 337 (2009) no. 1, pp. 48-52.

A new evolution equation coherent up to order one in the long wave parameter is derived to describe the non-linear behavior of a thin film flow down an inclined plane of a power law fluid for small to moderate Reynolds numbers. The method we have used combines the lubrication theory and the weighted residual approach, with a suitable weighting function. That approach was first developed by Ruyer-Quil and Manneville (2000) for Newtonian fluids. The model has the advantages of both the Shkadov type approach far from criticality and that of Benney close to criticality.

Un modèle non linéaire, cohérent à l'ordre un et combinant les avantages de l'approche asymptotique de Benney et de la méthode intégrale de Shkadov est proposée pour décrire le comportement d'un film mince de fluide en loi de puissance pour des nombres de Reynolds petits et modérés. La procédure utilisée est inspirée de la méthode des résidus pondérés développée par Ruyer-Quil et Manneville (2000) dans le cadre des fluides Newtoniens.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2009.01.002
Keywords: Fluid mechanics, Shkadov's model, Thin film flow
Mot clés : Mécanique des fluids, Modèle de Shkadov, Écoulement de film mince de fluide

Mustapha Amaouche 1; Amar Djema 1; L. Bourdache 1

1 UAMB, Université de Bejaia, route de Targa Ouzemmour, 06000 Bejaia, Algeria
@article{CRMECA_2009__337_1_48_0,
     author = {Mustapha Amaouche and Amar Djema and L. Bourdache},
     title = {A modified {Shkadov's} model for thin film flow of a power law fluid over an inclined surface},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {48--52},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2009},
     doi = {10.1016/j.crme.2009.01.002},
     language = {en},
}
TY  - JOUR
AU  - Mustapha Amaouche
AU  - Amar Djema
AU  - L. Bourdache
TI  - A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 48
EP  - 52
VL  - 337
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2009.01.002
LA  - en
ID  - CRMECA_2009__337_1_48_0
ER  - 
%0 Journal Article
%A Mustapha Amaouche
%A Amar Djema
%A L. Bourdache
%T A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface
%J Comptes Rendus. Mécanique
%D 2009
%P 48-52
%V 337
%N 1
%I Elsevier
%R 10.1016/j.crme.2009.01.002
%G en
%F CRMECA_2009__337_1_48_0
Mustapha Amaouche; Amar Djema; L. Bourdache. A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface. Comptes Rendus. Mécanique, Volume 337 (2009) no. 1, pp. 48-52. doi : 10.1016/j.crme.2009.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.01.002/

[1] D.J. Benney Long waves on liquid films, J. Math. Phys., Volume 45 (1966), pp. 150-155

[2] T. Ooshida Surface equation of falling film flows with moderate Reynolds number and large by finite Weber number, Phys. Fluids, Volume 11 (1999), pp. 3247-3269

[3] M.K.R. Panga; V. Balakotaiah Low dimensional models for vertically falling viscous films, Phys. Rev. Lett., Volume 90 (2003) no. 15, pp. 1-3

[4] C. Ruyer-Quil; P. Manneville Improved modeling of flows down inclined planes, Eur. Phys. J. B, Volume 15 (2000), pp. 357-369

[5] V.Y. Shkadov Wave conditions in the flow of thin layer of a viscous liquid under the action of gravity, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, Volume 1 (1967), pp. 43-51

[6] C. Ruyer-Quil; P. Manneville Comment on ‘Low dimensional models for vertically falling viscous films’, Phys. Rev. Lett. (2004), p. 199401

[7] J.S. Lin; C.C. Hwang Finite amplitude long-wave instability of power-law liquid films, Int. J. Non-Lin. Mech., Volume 35 (2000), pp. 769-777

[8] S. Miladinova; G. Lebon; E. Toshev Thin-film flow of a power-law liquid falling down an inclined plate, J. Non-Newtonian Fluid Mech., Volume 122 (2004), pp. 69-78

[9] B.S. Dandapat; A. Mukhopadhyay Waves on the surface of a falling power-law fluid film, Int. J. Non-Lin. Mech., Volume 38 (2003), pp. 21-38

[10] G.M. Sisoev; B.S. Dandapat; K.S. Matveyev; A. Mukhopadhyay Bifurcation analysis of the travelling waves on a falling power-law fluid film, J. Non-Newtonian Fluid Mech., Volume 141 (2007), pp. 128-137

Cited by Sources:

Comments - Policy