Comptes Rendus
A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface
[Modèle de Shkadov modifié pour l'écoulement de film mince de fluide en loi de puissance sur une plaque inclinée]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 1, pp. 48-52.

A new evolution equation coherent up to order one in the long wave parameter is derived to describe the non-linear behavior of a thin film flow down an inclined plane of a power law fluid for small to moderate Reynolds numbers. The method we have used combines the lubrication theory and the weighted residual approach, with a suitable weighting function. That approach was first developed by Ruyer-Quil and Manneville (2000) for Newtonian fluids. The model has the advantages of both the Shkadov type approach far from criticality and that of Benney close to criticality.

Un modèle non linéaire, cohérent à l'ordre un et combinant les avantages de l'approche asymptotique de Benney et de la méthode intégrale de Shkadov est proposée pour décrire le comportement d'un film mince de fluide en loi de puissance pour des nombres de Reynolds petits et modérés. La procédure utilisée est inspirée de la méthode des résidus pondérés développée par Ruyer-Quil et Manneville (2000) dans le cadre des fluides Newtoniens.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.01.002
Keywords: Fluid mechanics, Shkadov's model, Thin film flow
Mots-clés : Mécanique des fluids, Modèle de Shkadov, Écoulement de film mince de fluide

Mustapha Amaouche 1 ; Amar Djema 1 ; L. Bourdache 1

1 UAMB, Université de Bejaia, route de Targa Ouzemmour, 06000 Bejaia, Algeria
@article{CRMECA_2009__337_1_48_0,
     author = {Mustapha Amaouche and Amar Djema and L. Bourdache},
     title = {A modified {Shkadov's} model for thin film flow of a power law fluid over an inclined surface},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {48--52},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2009},
     doi = {10.1016/j.crme.2009.01.002},
     language = {en},
}
TY  - JOUR
AU  - Mustapha Amaouche
AU  - Amar Djema
AU  - L. Bourdache
TI  - A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 48
EP  - 52
VL  - 337
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2009.01.002
LA  - en
ID  - CRMECA_2009__337_1_48_0
ER  - 
%0 Journal Article
%A Mustapha Amaouche
%A Amar Djema
%A L. Bourdache
%T A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface
%J Comptes Rendus. Mécanique
%D 2009
%P 48-52
%V 337
%N 1
%I Elsevier
%R 10.1016/j.crme.2009.01.002
%G en
%F CRMECA_2009__337_1_48_0
Mustapha Amaouche; Amar Djema; L. Bourdache. A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface. Comptes Rendus. Mécanique, Volume 337 (2009) no. 1, pp. 48-52. doi : 10.1016/j.crme.2009.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.01.002/

[1] D.J. Benney Long waves on liquid films, J. Math. Phys., Volume 45 (1966), pp. 150-155

[2] T. Ooshida Surface equation of falling film flows with moderate Reynolds number and large by finite Weber number, Phys. Fluids, Volume 11 (1999), pp. 3247-3269

[3] M.K.R. Panga; V. Balakotaiah Low dimensional models for vertically falling viscous films, Phys. Rev. Lett., Volume 90 (2003) no. 15, pp. 1-3

[4] C. Ruyer-Quil; P. Manneville Improved modeling of flows down inclined planes, Eur. Phys. J. B, Volume 15 (2000), pp. 357-369

[5] V.Y. Shkadov Wave conditions in the flow of thin layer of a viscous liquid under the action of gravity, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, Volume 1 (1967), pp. 43-51

[6] C. Ruyer-Quil; P. Manneville Comment on ‘Low dimensional models for vertically falling viscous films’, Phys. Rev. Lett. (2004), p. 199401

[7] J.S. Lin; C.C. Hwang Finite amplitude long-wave instability of power-law liquid films, Int. J. Non-Lin. Mech., Volume 35 (2000), pp. 769-777

[8] S. Miladinova; G. Lebon; E. Toshev Thin-film flow of a power-law liquid falling down an inclined plate, J. Non-Newtonian Fluid Mech., Volume 122 (2004), pp. 69-78

[9] B.S. Dandapat; A. Mukhopadhyay Waves on the surface of a falling power-law fluid film, Int. J. Non-Lin. Mech., Volume 38 (2003), pp. 21-38

[10] G.M. Sisoev; B.S. Dandapat; K.S. Matveyev; A. Mukhopadhyay Bifurcation analysis of the travelling waves on a falling power-law fluid film, J. Non-Newtonian Fluid Mech., Volume 141 (2007), pp. 128-137

  • R. S. Selim; Kadry Zakaria Gravity-driven film flow of a power-law fluid over a wavy substrate with slip condition, Journal of Nonlinear Mathematical Physics, Volume 31 (2024) no. 1, p. 32 (Id/No 65) | DOI:10.1007/s44198-024-00223-y | Zbl:1551.76012
  • C. Di Cristo; M. Iervolino; A. Vacca Instabilities of a dam-break wave of power-law fluids, Physics of Fluids, Volume 35 (2023) no. 10 | DOI:10.1063/5.0163825
  • E. Mogilevskiy Stability of a generalized Newtonian liquid falling film on an oscillating inclined plane, Journal of Non-Newtonian Fluid Mechanics, Volume 282 (2020), p. 104334 | DOI:10.1016/j.jnnfm.2020.104334
  • Sumanta Chaudhuri; Paromita Chakraborty; Bitanjaya Das; Ram Karan Singh Flow Analysis of Multilayer Gravity-Driven Sisko Fluid over a Flat Inclined Plane, Arabian Journal for Science and Engineering, Volume 44 (2019) no. 9, p. 8081 | DOI:10.1007/s13369-019-03995-4
  • Blaise Nsom; Lucius Ramifidisoa; Noureddine Latrache; Farzaneh Ghaemizadeh Linear stability of shear-thinning fluid down an inclined plane, Journal of Molecular Liquids, Volume 277 (2019), p. 1036 | DOI:10.1016/j.molliq.2018.12.059
  • E. Mogilevskiy; R. Vakhitova Falling film of power-law fluid on a high-frequency oscillating inclined plane, Journal of Non-Newtonian Fluid Mechanics, Volume 269 (2019), p. 28 | DOI:10.1016/j.jnnfm.2019.05.006
  • Hamid Hassanzadeh Afrouzi; Majid Ahmadian; Abouzar Moshfegh; Davood Toghraie; Ashkan Javadzadegan Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using lattice-Boltzmann method, Physica A, Volume 535 (2019), p. 14 (Id/No 122486) | DOI:10.1016/j.physa.2019.122486 | Zbl:7571247
  • Symphony Chakraborty; Tony Wen-Hann Sheu; Sukhendu Ghosh Dynamics and stability of a power-law film flowing down a slippery slope, Physics of Fluids, Volume 31 (2019) no. 1 | DOI:10.1063/1.5078450
  • J. P. Pascal; S. J. D. D’Alessio; M. Hasan Instability of gravity-driven flow of a heated power-law fluid with temperature dependent consistency, AIP Advances, Volume 8 (2018) no. 10 | DOI:10.1063/1.5049657
  • Salah Saber Selim Selim A RESONANT GRAVITY-DRIVEN FLOW OF A POWER-LAW FLUID OVER A SLIPPERY TOPOGRAPHY SUBSTRATE, Bulletin of the Moscow State Regional University (Physics and Mathematics) (2018) no. 4, p. 178 | DOI:10.18384/2310-7251-2018-4-178-190
  • M. H. Allouche; V. Botton; S. Millet; D. Henry; S. Dagois-Bohy; B. Güzel; H. Ben Hadid Primary instability of a shear-thinning film flow down an incline: experimental study, Journal of Fluid Mechanics, Volume 821 (2017) | DOI:10.1017/jfm.2017.276
  • Anjalaiah Yadav; S. Chakraborty; R. Usha Steady solution of an inverse problem in gravity-driven shear-thinning film flow: Reconstruction of an uneven bottom substrate, Journal of Non-Newtonian Fluid Mechanics, Volume 219 (2015), p. 65 | DOI:10.1016/j.jnnfm.2015.03.003
  • M. Pradas; D. Tseluiko; C. Ruyer-Quil; S. Kalliadasis Pulse dynamics in a power-law falling film, Journal of Fluid Mechanics, Volume 747 (2014), pp. 460-480 | DOI:10.1017/jfm.2014.176 | Zbl:1325.76019
  • Cristiana Di Cristo; Michele Iervolino; Andrea Vacca Simplified wave models applicability to shallow mud flows modeled as power-law fluids, Journal of Mountain Science, Volume 11 (2014) no. 6, p. 1454 | DOI:10.1007/s11629-014-3065-6
  • Christian Ruyer-Quil; Nicolas Kofman; Didier Chasseur; Sophie Mergui Dynamics of falling liquid films, The European Physical Journal E, Volume 37 (2014) no. 4 | DOI:10.1140/epje/i2014-14030-5
  • K. Alba; S. M. Taghavi; I. A. Frigaard A weighted residual method for two-layer non-Newtonian channel flows: steady-state results and their stability, Journal of Fluid Mechanics, Volume 731 (2013), pp. 509-544 | DOI:10.1017/jfm.2013.381 | Zbl:1294.76110
  • Pascal Noble; Jean-Paul Vila Thin power-law film flow down an inclined plane: consistent shallow-water models and stability under large-scale perturbations, Journal of Fluid Mechanics, Volume 735 (2013), pp. 29-60 | DOI:10.1017/jfm.2013.454 | Zbl:1294.76056
  • Mustapha Amaouche; Amar Djema; Hamid Ait Abderrahmane Film flow for power-law fluids: modeling and linear stability, European Journal of Mechanics. B. Fluids, Volume 34 (2012), pp. 70-84 | DOI:10.1016/j.euromechflu.2012.02.001 | Zbl:1258.76091
  • C. Ruyer-Quil; S. Chakraborty; B. S. Dandapat Wavy regime of a power-law film flow, Journal of Fluid Mechanics, Volume 692 (2012), pp. 220-256 | DOI:10.1017/jfm.2011.508 | Zbl:1250.76073
  • C. Heining; N. Aksel Effects of inertia and surface tension on a power-law fluid flowing down a wavy incline, International Journal of Multiphase Flow, Volume 36 (2010) no. 11-12, p. 847 | DOI:10.1016/j.ijmultiphaseflow.2010.07.002

Cité par 20 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: