[Modèle de Shkadov modifié pour l'écoulement de film mince de fluide en loi de puissance sur une plaque inclinée]
A new evolution equation coherent up to order one in the long wave parameter is derived to describe the non-linear behavior of a thin film flow down an inclined plane of a power law fluid for small to moderate Reynolds numbers. The method we have used combines the lubrication theory and the weighted residual approach, with a suitable weighting function. That approach was first developed by Ruyer-Quil and Manneville (2000) for Newtonian fluids. The model has the advantages of both the Shkadov type approach far from criticality and that of Benney close to criticality.
Un modèle non linéaire, cohérent à l'ordre un et combinant les avantages de l'approche asymptotique de Benney et de la méthode intégrale de Shkadov est proposée pour décrire le comportement d'un film mince de fluide en loi de puissance pour des nombres de Reynolds petits et modérés. La procédure utilisée est inspirée de la méthode des résidus pondérés développée par Ruyer-Quil et Manneville (2000) dans le cadre des fluides Newtoniens.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluids, Modèle de Shkadov, Écoulement de film mince de fluide
Mustapha Amaouche 1 ; Amar Djema 1 ; L. Bourdache 1
@article{CRMECA_2009__337_1_48_0, author = {Mustapha Amaouche and Amar Djema and L. Bourdache}, title = {A modified {Shkadov's} model for thin film flow of a power law fluid over an inclined surface}, journal = {Comptes Rendus. M\'ecanique}, pages = {48--52}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2009}, doi = {10.1016/j.crme.2009.01.002}, language = {en}, }
TY - JOUR AU - Mustapha Amaouche AU - Amar Djema AU - L. Bourdache TI - A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface JO - Comptes Rendus. Mécanique PY - 2009 SP - 48 EP - 52 VL - 337 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2009.01.002 LA - en ID - CRMECA_2009__337_1_48_0 ER -
Mustapha Amaouche; Amar Djema; L. Bourdache. A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface. Comptes Rendus. Mécanique, Volume 337 (2009) no. 1, pp. 48-52. doi : 10.1016/j.crme.2009.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.01.002/
[1] Long waves on liquid films, J. Math. Phys., Volume 45 (1966), pp. 150-155
[2] Surface equation of falling film flows with moderate Reynolds number and large by finite Weber number, Phys. Fluids, Volume 11 (1999), pp. 3247-3269
[3] Low dimensional models for vertically falling viscous films, Phys. Rev. Lett., Volume 90 (2003) no. 15, pp. 1-3
[4] Improved modeling of flows down inclined planes, Eur. Phys. J. B, Volume 15 (2000), pp. 357-369
[5] Wave conditions in the flow of thin layer of a viscous liquid under the action of gravity, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, Volume 1 (1967), pp. 43-51
[6] Comment on ‘Low dimensional models for vertically falling viscous films’, Phys. Rev. Lett. (2004), p. 199401
[7] Finite amplitude long-wave instability of power-law liquid films, Int. J. Non-Lin. Mech., Volume 35 (2000), pp. 769-777
[8] Thin-film flow of a power-law liquid falling down an inclined plate, J. Non-Newtonian Fluid Mech., Volume 122 (2004), pp. 69-78
[9] Waves on the surface of a falling power-law fluid film, Int. J. Non-Lin. Mech., Volume 38 (2003), pp. 21-38
[10] Bifurcation analysis of the travelling waves on a falling power-law fluid film, J. Non-Newtonian Fluid Mech., Volume 141 (2007), pp. 128-137
- Gravity-driven film flow of a power-law fluid over a wavy substrate with slip condition, Journal of Nonlinear Mathematical Physics, Volume 31 (2024) no. 1, p. 32 (Id/No 65) | DOI:10.1007/s44198-024-00223-y | Zbl:1551.76012
- Instabilities of a dam-break wave of power-law fluids, Physics of Fluids, Volume 35 (2023) no. 10 | DOI:10.1063/5.0163825
- Stability of a generalized Newtonian liquid falling film on an oscillating inclined plane, Journal of Non-Newtonian Fluid Mechanics, Volume 282 (2020), p. 104334 | DOI:10.1016/j.jnnfm.2020.104334
- Flow Analysis of Multilayer Gravity-Driven Sisko Fluid over a Flat Inclined Plane, Arabian Journal for Science and Engineering, Volume 44 (2019) no. 9, p. 8081 | DOI:10.1007/s13369-019-03995-4
- Linear stability of shear-thinning fluid down an inclined plane, Journal of Molecular Liquids, Volume 277 (2019), p. 1036 | DOI:10.1016/j.molliq.2018.12.059
- Falling film of power-law fluid on a high-frequency oscillating inclined plane, Journal of Non-Newtonian Fluid Mechanics, Volume 269 (2019), p. 28 | DOI:10.1016/j.jnnfm.2019.05.006
- Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using lattice-Boltzmann method, Physica A, Volume 535 (2019), p. 14 (Id/No 122486) | DOI:10.1016/j.physa.2019.122486 | Zbl:7571247
- Dynamics and stability of a power-law film flowing down a slippery slope, Physics of Fluids, Volume 31 (2019) no. 1 | DOI:10.1063/1.5078450
- Instability of gravity-driven flow of a heated power-law fluid with temperature dependent consistency, AIP Advances, Volume 8 (2018) no. 10 | DOI:10.1063/1.5049657
- A RESONANT GRAVITY-DRIVEN FLOW OF A POWER-LAW FLUID OVER A SLIPPERY TOPOGRAPHY SUBSTRATE, Bulletin of the Moscow State Regional University (Physics and Mathematics) (2018) no. 4, p. 178 | DOI:10.18384/2310-7251-2018-4-178-190
- Primary instability of a shear-thinning film flow down an incline: experimental study, Journal of Fluid Mechanics, Volume 821 (2017) | DOI:10.1017/jfm.2017.276
- Steady solution of an inverse problem in gravity-driven shear-thinning film flow: Reconstruction of an uneven bottom substrate, Journal of Non-Newtonian Fluid Mechanics, Volume 219 (2015), p. 65 | DOI:10.1016/j.jnnfm.2015.03.003
- Pulse dynamics in a power-law falling film, Journal of Fluid Mechanics, Volume 747 (2014), pp. 460-480 | DOI:10.1017/jfm.2014.176 | Zbl:1325.76019
- Simplified wave models applicability to shallow mud flows modeled as power-law fluids, Journal of Mountain Science, Volume 11 (2014) no. 6, p. 1454 | DOI:10.1007/s11629-014-3065-6
- Dynamics of falling liquid films, The European Physical Journal E, Volume 37 (2014) no. 4 | DOI:10.1140/epje/i2014-14030-5
- A weighted residual method for two-layer non-Newtonian channel flows: steady-state results and their stability, Journal of Fluid Mechanics, Volume 731 (2013), pp. 509-544 | DOI:10.1017/jfm.2013.381 | Zbl:1294.76110
- Thin power-law film flow down an inclined plane: consistent shallow-water models and stability under large-scale perturbations, Journal of Fluid Mechanics, Volume 735 (2013), pp. 29-60 | DOI:10.1017/jfm.2013.454 | Zbl:1294.76056
- Film flow for power-law fluids: modeling and linear stability, European Journal of Mechanics. B. Fluids, Volume 34 (2012), pp. 70-84 | DOI:10.1016/j.euromechflu.2012.02.001 | Zbl:1258.76091
- Wavy regime of a power-law film flow, Journal of Fluid Mechanics, Volume 692 (2012), pp. 220-256 | DOI:10.1017/jfm.2011.508 | Zbl:1250.76073
- Effects of inertia and surface tension on a power-law fluid flowing down a wavy incline, International Journal of Multiphase Flow, Volume 36 (2010) no. 11-12, p. 847 | DOI:10.1016/j.ijmultiphaseflow.2010.07.002
Cité par 20 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier