Comptes Rendus
Vortex identification and tracking in unsteady flows
Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 61-67.

The present Note deals with the identification and tracking of vortices in a time-resolved unsteady flow. The approach is based on the combination of two existing post-processing tools that are Galilean invariant functions: feature flow field f and vortex identification algorithm γ2. An analytical development shows that the joint use of γ2 and the streamlines of f allows to identify and track the location of the center of a vortex core with a non-zero convection velocity. We discuss the applicability of this procedure to actual flows for which the assumptions of the analytical approach may not be strictly valid. The procedure is validated using PIV measurements performed in an oscillating flow in a model of thermoacoustic refrigerator. This method proves to be efficient for the automated analysis of convection processes when large numbers of vortices are involved.

Published online:
DOI: 10.1016/j.crme.2009.03.006
Keywords: Fluid mechanics, Vortex tracking, Feature flow field, Unsteady flow, PIV

Arganthaël Berson 1; Marc Michard 2; Philippe Blanc-Benon 2

1 Fuel Cell Research Centre, Queen's University, 945, Princess St., Kingston ON, K7L 5L9, Canada
2 LMFA UMR CNRS 5509, École centrale de Lyon, 36, avenue Guy-de-Collongue, 69134 Ecully Cedex, France
     author = {Argantha\"el Berson and Marc Michard and Philippe Blanc-Benon},
     title = {Vortex identification and tracking in unsteady flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {61--67},
     publisher = {Elsevier},
     volume = {337},
     number = {2},
     year = {2009},
     doi = {10.1016/j.crme.2009.03.006},
     language = {en},
AU  - Arganthaël Berson
AU  - Marc Michard
AU  - Philippe Blanc-Benon
TI  - Vortex identification and tracking in unsteady flows
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 61
EP  - 67
VL  - 337
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2009.03.006
LA  - en
ID  - CRMECA_2009__337_2_61_0
ER  - 
%0 Journal Article
%A Arganthaël Berson
%A Marc Michard
%A Philippe Blanc-Benon
%T Vortex identification and tracking in unsteady flows
%J Comptes Rendus. Mécanique
%D 2009
%P 61-67
%V 337
%N 2
%I Elsevier
%R 10.1016/j.crme.2009.03.006
%G en
%F CRMECA_2009__337_2_61_0
Arganthaël Berson; Marc Michard; Philippe Blanc-Benon. Vortex identification and tracking in unsteady flows. Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 61-67. doi : 10.1016/j.crme.2009.03.006.

[1] M.S. Chong; A.E. Perry; B.J. Cantwell A general classification of three-dimensional flow fields, Phys. Fluids A, Volume 2 (1990), pp. 765-777

[2] J.M. Délery; R. Legendre; H. Werlé Towards the elucidation of three-dimensional separation, Annu. Rev. Fluid Mech., Volume 33 (2001), pp. 129-154

[3] S. Depardon; J.J. Lasserre; L.E. Brizzi; J. Boree Instantaneous skin-friction pattern analysis using automated critical point detection on near-wall PIV data, Meas. Sci. Technol., Volume 17 (2006) no. 7, pp. 1659-1669

[4] H. Theisel, H.-P. Seidel, Feature flow fields, in: Data Visualization 2003. Proc. VisSym 03, 2003, pp. 141–148

[5] L. Graftieaux; M. Michard; N. Grosjean Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent, swirling flows, Meas. Sci. Technol., Volume 12 (2001), pp. 1422-1429

[6] Th. Favelier, M. Michard, N. Grosjean, Développement d'un critère d'identification de structures tourbillonnaires adapté aux mesures de vitesse par PIV, Proc. 9ème Congrès Francophone de Vélocimétrie Laser, E.2.1–E.2.8, Bruxelles, 14–17 Sept. 2004

[7] J. Jeong; F. Hussain On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94

[8] J.C.R. Hunt, A.A. Wray, P. Moin, Eddies, stream and convergence zones in turbulent flows, Center for Turbulence Research Report CTR-S88, 1988, pp. 193–208

[9] G.W. Swift Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Acoustical Society of America, New York, 2002

[10] Ph. Blanc-Benon; E. Besnoin; O. Knio Experimental and computational visualization of the flow field in a thermoacoustic stack, C. R. Mecanique, Volume 331 (2003), pp. 17-24

[11] A. Berson, Vers la miniaturisation des réfrigérateurs thermoacoustiques : caractérisation du transport non-linéaire du transport de chaleur et des écoulements secondaires. Thèse de doctorat 2007-41, Ecole Centrale de Lyon, 2007

[12] A. Berson; M. Michard; Ph. Blanc-Benon Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using Particle Image Velocimetry, Heat Mass Transfer, Volume 44 (2008) no. 8, pp. 1015-1023

[13] D. Marx; H. Bailliet; J.-C. Valière Analysis of the acoustic flow at an abrupt change in section of an acoustic waveguide using particle image velocimetry and proper orthogonal decomposition, Acta Acustica united with Acustica, Volume 94 (2008), pp. 54-65

[14] P.C.H. Aben, P.R. Bloemen, J.C.H. Zeegers, 2-D PIV measurements of oscillatory flow around parallel plates, Exp. Fluids (2008), available online

[15] E. Besnoin; O. Knio Numerical study of thermoacoustic heat exchangers, Acta Acustica united with Acustica, Volume 90 (2004), pp. 432-444

[16] A. Berson; Ph. Blanc-Benon Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes, J. Acoust. Soc. Am., Volume 122 (2007), p. EL122-EL127

Cited by Sources:

Comments - Policy