Comptes Rendus
Vortex identification and tracking in unsteady flows
Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 61-67.

The present Note deals with the identification and tracking of vortices in a time-resolved unsteady flow. The approach is based on the combination of two existing post-processing tools that are Galilean invariant functions: feature flow field f and vortex identification algorithm γ2. An analytical development shows that the joint use of γ2 and the streamlines of f allows to identify and track the location of the center of a vortex core with a non-zero convection velocity. We discuss the applicability of this procedure to actual flows for which the assumptions of the analytical approach may not be strictly valid. The procedure is validated using PIV measurements performed in an oscillating flow in a model of thermoacoustic refrigerator. This method proves to be efficient for the automated analysis of convection processes when large numbers of vortices are involved.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.03.006
Keywords: Fluid mechanics, Vortex tracking, Feature flow field, Unsteady flow, PIV

Arganthaël Berson 1 ; Marc Michard 2 ; Philippe Blanc-Benon 2

1 Fuel Cell Research Centre, Queen's University, 945, Princess St., Kingston ON, K7L 5L9, Canada
2 LMFA UMR CNRS 5509, École centrale de Lyon, 36, avenue Guy-de-Collongue, 69134 Ecully Cedex, France
@article{CRMECA_2009__337_2_61_0,
     author = {Argantha\"el Berson and Marc Michard and Philippe Blanc-Benon},
     title = {Vortex identification and tracking in unsteady flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {61--67},
     publisher = {Elsevier},
     volume = {337},
     number = {2},
     year = {2009},
     doi = {10.1016/j.crme.2009.03.006},
     language = {en},
}
TY  - JOUR
AU  - Arganthaël Berson
AU  - Marc Michard
AU  - Philippe Blanc-Benon
TI  - Vortex identification and tracking in unsteady flows
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 61
EP  - 67
VL  - 337
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2009.03.006
LA  - en
ID  - CRMECA_2009__337_2_61_0
ER  - 
%0 Journal Article
%A Arganthaël Berson
%A Marc Michard
%A Philippe Blanc-Benon
%T Vortex identification and tracking in unsteady flows
%J Comptes Rendus. Mécanique
%D 2009
%P 61-67
%V 337
%N 2
%I Elsevier
%R 10.1016/j.crme.2009.03.006
%G en
%F CRMECA_2009__337_2_61_0
Arganthaël Berson; Marc Michard; Philippe Blanc-Benon. Vortex identification and tracking in unsteady flows. Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 61-67. doi : 10.1016/j.crme.2009.03.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.006/

[1] M.S. Chong; A.E. Perry; B.J. Cantwell A general classification of three-dimensional flow fields, Phys. Fluids A, Volume 2 (1990), pp. 765-777

[2] J.M. Délery; R. Legendre; H. Werlé Towards the elucidation of three-dimensional separation, Annu. Rev. Fluid Mech., Volume 33 (2001), pp. 129-154

[3] S. Depardon; J.J. Lasserre; L.E. Brizzi; J. Boree Instantaneous skin-friction pattern analysis using automated critical point detection on near-wall PIV data, Meas. Sci. Technol., Volume 17 (2006) no. 7, pp. 1659-1669

[4] H. Theisel, H.-P. Seidel, Feature flow fields, in: Data Visualization 2003. Proc. VisSym 03, 2003, pp. 141–148

[5] L. Graftieaux; M. Michard; N. Grosjean Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent, swirling flows, Meas. Sci. Technol., Volume 12 (2001), pp. 1422-1429

[6] Th. Favelier, M. Michard, N. Grosjean, Développement d'un critère d'identification de structures tourbillonnaires adapté aux mesures de vitesse par PIV, Proc. 9ème Congrès Francophone de Vélocimétrie Laser, E.2.1–E.2.8, Bruxelles, 14–17 Sept. 2004

[7] J. Jeong; F. Hussain On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94

[8] J.C.R. Hunt, A.A. Wray, P. Moin, Eddies, stream and convergence zones in turbulent flows, Center for Turbulence Research Report CTR-S88, 1988, pp. 193–208

[9] G.W. Swift Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Acoustical Society of America, New York, 2002

[10] Ph. Blanc-Benon; E. Besnoin; O. Knio Experimental and computational visualization of the flow field in a thermoacoustic stack, C. R. Mecanique, Volume 331 (2003), pp. 17-24

[11] A. Berson, Vers la miniaturisation des réfrigérateurs thermoacoustiques : caractérisation du transport non-linéaire du transport de chaleur et des écoulements secondaires. Thèse de doctorat 2007-41, Ecole Centrale de Lyon, 2007

[12] A. Berson; M. Michard; Ph. Blanc-Benon Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using Particle Image Velocimetry, Heat Mass Transfer, Volume 44 (2008) no. 8, pp. 1015-1023

[13] D. Marx; H. Bailliet; J.-C. Valière Analysis of the acoustic flow at an abrupt change in section of an acoustic waveguide using particle image velocimetry and proper orthogonal decomposition, Acta Acustica united with Acustica, Volume 94 (2008), pp. 54-65

[14] P.C.H. Aben, P.R. Bloemen, J.C.H. Zeegers, 2-D PIV measurements of oscillatory flow around parallel plates, Exp. Fluids (2008), available online

[15] E. Besnoin; O. Knio Numerical study of thermoacoustic heat exchangers, Acta Acustica united with Acustica, Volume 90 (2004), pp. 432-444

[16] A. Berson; Ph. Blanc-Benon Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes, J. Acoust. Soc. Am., Volume 122 (2007), p. EL122-EL127

  • Barnabas Toth; Bojan Vukasinovic; Ari Glezer, AIAA SCITECH 2025 Forum (2025) | DOI:10.2514/6.2025-1489
  • Olivier Bouillanne; Guilhem Mollon; Aurélien Saulot; Sylvie Descartes; Nathalie Serres; Guillaume Chassaing; Karim Demmou Wear in Progress: How Third Body Flow Controls Surface Damage, Tribology Letters, Volume 72 (2024) no. 3 | DOI:10.1007/s11249-024-01875-z
  • Han Tu; Mathew Marzanek; Melissa A. Green; David E. Rival FTLE and Surface-Pressure Signature of Dynamic Flow Reattachment During Delta-Wing Axial Acceleration, AIAA Journal, Volume 60 (2022) no. 4, p. 2178 | DOI:10.2514/1.j061070
  • Olivier Bouillanne; Guilhem Mollon; Aurélien Saulot; Sylvie Descartes; Nathalie Serres; Guillaume Chassaing; Karim Demmou How vorticity and agglomeration control shear strength in soft cohesive granular flows, Granular Matter, Volume 24 (2022) no. 2 | DOI:10.1007/s10035-022-01216-8
  • Olivier Bouillanne; Guilhem Mollon; Aurélien Saulot; Sylvie Descartes; Nathalie Serres; Karim Demmou; Guillaume Chassaing; M.A. Aguirre; S. Luding; L.A. Pugnaloni; R. Soto Detecting vorticity in cohesive deformable granular material, EPJ Web of Conferences, Volume 249 (2021), p. 08005 | DOI:10.1051/epjconf/202124908005
  • Han Tu; Matthew Marzanek; Melissa A. Green; David E. Rival, AIAA Scitech 2020 Forum (2020) | DOI:10.2514/6.2020-2043
  • Mohammad Oneissi; Elkhadim Bouhoubeiny; Serge Russeil; Daniel Bougeard; Thierry Lemenand; Charbel Habchi Experimental analysis by stereo-PIV of the development of streamwise vortices downstream of rectangular winglets, Heat and Mass Transfer, Volume 56 (2020) no. 8, p. 2487 | DOI:10.1007/s00231-020-02874-1
  • Han Tu; Matthew Marzanek; Melissa A. Green; David E. Rival, AIAA Scitech 2019 Forum (2019) | DOI:10.2514/6.2019-2165
  • Shi Yin; Yuguo Li; Yifan Fan; Mats Sandberg Unsteady large-scale flow patterns and dynamic vortex movement in near-field triple buoyant plumes, Building and Environment, Volume 142 (2018), p. 288 | DOI:10.1016/j.buildenv.2018.06.027
  • S Goli; S S Dammati; A Roy; S Roy Coherent structures in the flow field generated by rigid flapping wing in hovering flight mode, IOP Conference Series: Materials Science and Engineering, Volume 402 (2018), p. 012155 | DOI:10.1088/1757-899x/402/1/012155
  • Jiayu Li; Junjie Liu; Congcong Wang; Mark Wesseling; Dirk Müller PIV experimental study of the large-scale dynamic airflow structures in an aircraft cabin: Swing and oscillation, Building and Environment, Volume 125 (2017), p. 180 | DOI:10.1016/j.buildenv.2017.07.043
  • Li Chao; Wu Lingda; Zhao Bin, 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS) (2016), p. 641 | DOI:10.1109/icsess.2016.7883150
  • Eric Gutierrez; Daniel B Quinn; Diana D Chin; David Lentink Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics, Bioinspiration Biomimetics, Volume 12 (2016) no. 1, p. 016004 | DOI:10.1088/1748-3190/12/1/016004
  • Jean Rabault; Julie A. Vernet; Björn Lindgren; P. Henrik Alfredsson A study using PIV of the intake flow in a diesel engine cylinder, International Journal of Heat and Fluid Flow, Volume 62 (2016), p. 56 | DOI:10.1016/j.ijheatfluidflow.2016.06.020
  • Wentao Wang; Wenke Wang; Sikun Li From numerics to combinatorics: a survey of topological methods for vector field visualization, Journal of Visualization, Volume 19 (2016) no. 4, p. 727 | DOI:10.1007/s12650-016-0348-8
  • Yangzi Huang; Melissa A. Green, 53rd AIAA Aerospace Sciences Meeting (2015) | DOI:10.2514/6.2015-1537
  • Yangzi Huang; Melissa A. Green Detection and tracking of vortex phenomena using Lagrangian coherent structures, Experiments in Fluids, Volume 56 (2015) no. 7 | DOI:10.1007/s00348-015-2001-z
  • Dong-Wei Zhang; Ya-Ling He; Wei-Wei Yang; Yong Wang; Wen-Quan Tao Particle image velocimetry measurement on the oscillatory flow at the end of the thermoacoustic parallel stacks, Applied Thermal Engineering, Volume 51 (2013) no. 1-2, p. 325 | DOI:10.1016/j.applthermaleng.2012.09.011
  • N. Cormier; G. Cormier; G. Poitras; L.‐É. Brizzi Automated critical point identification for PIV data using multimodal particle swarm optimization, International Journal for Numerical Methods in Fluids, Volume 70 (2012) no. 7, p. 923 | DOI:10.1002/fld.2711

Cité par 19 documents. Sources : Crossref

Commentaires - Politique