Comptes Rendus
Homogenization of pε(x)-Laplacian in perforated domains with a nonlocal transmission condition
Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 173-178.

We study the asymptotic behavior, as ε0, of uε solutions to a nonlinear elliptic equation with nonstandard growth condition in domains containing a grid-type microstructure Fε that is concentrated in an arbitrary small neighborhood of a given hypersurface Γ. We assume that uε=Aε on Fε, where Aε is an unknown constant. The macroscopic equation and a nonlocal transmission condition on Γ are obtained by the variational homogenization technique in the framework of Sobolev spaces with variables exponents. This result is then illustrated by a periodic example.

On étudie le comportement asymptotique, lorsque ε0, des solutions uε d'une équation elliptique non linéaire de croissance non standard dans des domains qui contiennent une microstructure ayant la forme d'une grille. Cette microstructure est concentrée dans un petit voisinage arbitraire d'une hypersurface Γ. On suppose que uε=Aε sur Fε, où Aε est une constante inconnue. L'équation macroscopique et une condition de transmission non locale sur Γ sont obtenues par la technique de l'homogénéisation variationnelle dans le cadre des espaces de Sobolev avec des exposants variables. On présente un exemple périodique pour illustrer le résultat obtenu.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2009.03.011
Keywords: Fluid mechanics, Homogenization, Nonlinear variational problem, Nonstandard growth
Mot clés : Mécanique des fluides, Homogénéisation, Problème variationnel non linéaire, Croissance non standard

Brahim Amaziane 1; Leonid Pankratov 1, 2; Vladyslav Prytula 3

1 Laboratoire de mathématiques et de leurs applications, CNRS–UMR 5142, Université de Pau, avenue de l'Université, 64000 Pau, France
2 Département de mathématiques, B. Verkin Institut des Basses Températures, 47, avenue Lénine, 61103, Kharkov, Ukraine
3 Departamento de Matemáticas, Universidad de Castilla-La Mancha, av. Camilo Jose Cela, 13071 Ciudad Real, España
@article{CRMECA_2009__337_3_173_0,
     author = {Brahim Amaziane and Leonid Pankratov and Vladyslav Prytula},
     title = {Homogenization of $ {p}_{\epsilon }(x)${-Laplacian} in perforated domains with a nonlocal transmission condition},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {173--178},
     publisher = {Elsevier},
     volume = {337},
     number = {3},
     year = {2009},
     doi = {10.1016/j.crme.2009.03.011},
     language = {en},
}
TY  - JOUR
AU  - Brahim Amaziane
AU  - Leonid Pankratov
AU  - Vladyslav Prytula
TI  - Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 173
EP  - 178
VL  - 337
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2009.03.011
LA  - en
ID  - CRMECA_2009__337_3_173_0
ER  - 
%0 Journal Article
%A Brahim Amaziane
%A Leonid Pankratov
%A Vladyslav Prytula
%T Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition
%J Comptes Rendus. Mécanique
%D 2009
%P 173-178
%V 337
%N 3
%I Elsevier
%R 10.1016/j.crme.2009.03.011
%G en
%F CRMECA_2009__337_3_173_0
Brahim Amaziane; Leonid Pankratov; Vladyslav Prytula. Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 173-178. doi : 10.1016/j.crme.2009.03.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.011/

[1] S.N. Antontsev; J.F. Rodrigues On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez., Sci. Mat., Volume 52 (2006), pp. 19-36

[2] M. Ru̇žička Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000

[3] S.N. Antontsev; S.I. Shmarev Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions (M. Chipot; P. Quittner, eds.), Handbook of Differential Equations: Stationary Partial Differential Equations, Elsevier, Amsterdam, 2006, pp. 1-100

[4] S.N. Antontsev; S.I. Shmarev Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, J. Math. Sci., Volume 150 (2008), pp. 2289-2301

[5] B. Amaziane; S. Antontsev; L. Pankratov; A. Piatnitski Γ-convergence and homogenization of functionals on Sobolev spaces with variable exponents, J. Math. Anal. Appl., Volume 342 (2008), pp. 1192-1202

[6] B. Amaziane; S. Antontsev; L. Pankratov Homogenization of a class of nonlinear elliptic equations with nonstandard growth, C. R. Mécanique, Volume 335 (2007), pp. 138-143

[7] M. Goncharenko; V. Prytula Homogenization of the electrostatic problems in nonlinear medium with thin perfectly conducting grids, J. Math. Phys. Anal. Geom., Volume 2 (2006), pp. 424-448

[8] E. Khruslov; L. Pankratov Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Fields Inst. Commun., Volume 25 (2000), pp. 345-366

[9] V.A. Marchenko; E.Ya. Khruslov Homogenization of Partial Differential Equations, Birkhäuser, Berlin, 2006

[10] M. Bellieud; G. Bouchitté Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Cl. Sci. IV, Volume 26 (1998), pp. 407-436

[11] M. Briane; J. Casado-Diaz Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization, Comm. Partial Differential Equations, Volume 32 (2007), pp. 935-969

[12] E. Khruslov Homogenization of Maxwell's equations in domains with dense perfectly conducting grids, Ukrainskii Matematicheskii Vestnik, Volume 2 (2005), pp. 119-151

[13] A. Braides; A. Defranceschi Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, vol. 12, Clarendon Press, Oxford, 1998

[14] V.V. Zhikov; S.M. Kozlov; O.A. Oleinik Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994

Cited by Sources:

Comments - Policy