[Modélisation du rayonnement par Monte Carlo appliquée dans les flammes turbulentes simulées par LES]
Le transfert radiatif joue un rôle important dans la simulation numérique de la combustion turbulente. Toutefois, à cause du fait que la combustion et le rayonnement sont deux phénomènes physiques très différents caractérisés par des échelles de temps et d'espace également différentes, l'effet du rayonnement est souvent négligé ou simplement modélisé. Le couplage entre la combustion (LES) et le rayonnement avec le solveur CORBA a été étudié. Dans le présent article, deux formulations de la méthode de Monte Carlo (méthode classique et méthode réciproque) dédiées à la résolution de l'équation de transfert radiatif ont été comparées sur un cas test de flamme 1D où l'on tient compte de l'absorption et de l'émission du milieu en utilisant un maillage 3D. Le but de ce cas test est de valider le solveur Monte Carlo et de choisir la méthode la plus efficace pour réaliser le couplage. Ensuite, deux solveurs radiatifs (Emission Reciprocity Monte Carlo Method et Discrete Ordinate Method), appliqués à une flamme Dièdre 3D avec un modèle CK de propriétés radiatives, sont comparés non seulement en termes de description physique de la flamme, mais aussi en terme de performances de calcul (stockage, temps CPU et efficacité de la parallélisation).
Radiative transfer plays an important role in the numerical simulation of turbulent combustion. However, for the reason that combustion and radiation are characterized by different time scales and different spatial and chemical treatments, the radiation effect is often neglected or roughly modelled. The coupling of a large eddy simulation combustion solver and a radiation solver through a dedicated language, CORBA, is investigated. Two formulations of Monte Carlo method (Forward Method and Emission Reciprocity Method) employed to resolve RTE have been compared in a one-dimensional flame test case using three-dimensional calculation grids with absorbing and emitting media in order to validate the Monte Carlo radiative solver and to choose the most efficient model for coupling. Then the results obtained using two different RTE solvers (Reciprocity Monte Carlo method and Discrete Ordinate Method) applied on a three-dimensional flame holder set-up with a correlated-k distribution model describing the real gas medium spectral radiative properties are compared not only in terms of the physical behavior of the flame, but also in computational performance (storage requirement, CPU time and parallelization efficiency).
Mot clés : Combustion, Monte Carlo, Transfer radiatif, LES, Combustion Turbulente, Couplage
Jin Zhang 1 ; Olivier Gicquel 1 ; Denis Veynante 1 ; Jean Taine 1
@article{CRMECA_2009__337_6-7_539_0, author = {Jin Zhang and Olivier Gicquel and Denis Veynante and Jean Taine}, title = {Monte {Carlo} method of radiative transfer applied to a turbulent flame modeling with {LES}}, journal = {Comptes Rendus. M\'ecanique}, pages = {539--549}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.024}, language = {en}, }
TY - JOUR AU - Jin Zhang AU - Olivier Gicquel AU - Denis Veynante AU - Jean Taine TI - Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES JO - Comptes Rendus. Mécanique PY - 2009 SP - 539 EP - 549 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.024 LA - en ID - CRMECA_2009__337_6-7_539_0 ER -
%0 Journal Article %A Jin Zhang %A Olivier Gicquel %A Denis Veynante %A Jean Taine %T Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES %J Comptes Rendus. Mécanique %D 2009 %P 539-549 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.024 %G en %F CRMECA_2009__337_6-7_539_0
Jin Zhang; Olivier Gicquel; Denis Veynante; Jean Taine. Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 539-549. doi : 10.1016/j.crme.2009.06.024. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.024/
[1] Reduction of computing time and improvement of convergence stability of the Monte Carlo method applied to radiative heat transfer with variable properties, Journal of Heat Transfer – Transactions of the ASME, Volume 111 (1989), pp. 135-140
[2] Monte Carlo simulation of radiation in scattering volumes with line structure, Journal of Thermophysics and Heat Transfer, Volume 12 (1998), pp. 278-281
[3] Monte Carlo analysis of the backscattering of radiation from a sphere to a plane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 43 (1990), pp. 115-126
[4] Monte Carlo radiation solutions—effect of energy partitioning and number of rays, International Journal of Heat and Mass Transfer, Volume 16 (1973), pp. 690-694
[5] Rigorous development for radiation heat transfer in nonhomogeneous absorbing, emitting and scattering media, International Journal of Heat and Mass Transfer, Volume 35 (1992), pp. 3323-3333
[6] Monte Carlo methods for radiative heat transfer in scattering media, Annual Review of Heat Transfer, Volume 5 (1994), pp. 131-176
[7] Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation, Journal of Heat Transfer – Transactions of the ASME, Volume 118 (1996), pp. 401-407
[8] Radiative net exchange formulation within one-dimensional gas enclosures with reflective surfaces, Journal of Heat Transfer – Transactions of the ASME, Volume 120 (1998), pp. 275-278
[9] A net-exchange Monte Carlo approach to radiation in optically thick systems, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 74 (2002), pp. 563-584
[10] Radiative transfer in real gases using reciprocal forward Monte Carlo methods and a correlated-k approach, International Journal of Heat and Mass Transfer, Volume 45 (2002), pp. 2797-2814
[11] Theoretical Numerical Combustion, Edwards Inc., Philadelphia, USA, 2005
[12] Combustion–radiation–turbulence interaction modeling in absorbing/emitting nonpremixed flames, Combustion Science and Technology, Volume 172 (2001), pp. 1-22
[13] Spectral radiative effects turbulence radiation interaction in a non-luminous turbulent jet diffusion flame, Combustion and Flame, Volume 133 (2003), pp. 75-91
[14] Importance of turbulence radiation interactions in turbulent diffusion jet flames, Journal of Heat Transfer – Transactions of the ASME, Volume 125 (2003), pp. 831-838
[15] Interaction of turbulence, chemistry, and radiation in strained nonpremixed flames, Journal of Physics Conference Series, Volume 16 (2005), pp. 91-100
[16] Direct numerical simulation of turbulence/radiation interaction in premixed combustion systems, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 639-646
[17] Two-dimensional large eddy simulation of soot formation in the near-field of a strongly radiating nonpremixed acetylene–air turbulent jet flame, Combustion and Flame, Volume 119 (1999), pp. 121-132
[18] Combination of DOM with LES in a gas turbine combustor, International Journal of Engineering Science, Volume 43 (2005), pp. 379-397
[19] R. Goncalves Dos Santos, Large eddy simulations of turbulent combustion including radiative heat transfer, Ph.D. thesis, Ecole Centrale Paris, France, 2008
[20] Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes, Combustion and Flame, Volume 137 (2004), pp. 489-505
[21] http://www.cerfacs.fr/cfd/avbp_code.php
[22] An optimized reciprocity Monte Carlo method for the calculation of radiative transfer in media of various optical thickness, International Journal of Heat and Mass Transfer, Volume 49 (2006), pp. 1310-1319
[23] Monte Carlo modeling of radiative transfer in a turbulent sooty flame, International Journal of Heat and Mass Transfer, Volume 47 (2004), pp. 555-572
[24] L. Tesse, Modelisation des transferts radiatifs dans les flammes turbulentes par une methode de Monte Carlo, Ph.D. thesis, 2001
[25] Transferts Thermques, Dunod, France, 2008
[26] Correlated-k fictitious gas methods for H2O near 2.7 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 48 (1992), pp. 187-203
[27] High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO and correlated-k model for H2O and CO2, International Journal of Heat and Mass Transfer, Volume 40 (1997), pp. 987-991
[28] Monte Carlo strategies for radiative transfer in participating media, Advances in Heat Transfer, Volume 31 (1998), pp. 1-97
[29] D. Joseph, P. Coelho, B. Cuenot, M. El Hafi, Application of the discrete ordinates method to grey media in complex geometries using unstructured meshes, in: Eurotherm73 on Computational Thermal Radiation in Participating Media, vol. 11, 2003, pp. 97–106
[30] D. Joseph, Modelisation des transferts radiatifs en combustion par la methode des Ordonnees Discretes sur des maillages non-structures tridimensionanels, Ph.D. thesis, Institut National Polytechnique de Toulouse, France, 2004
[31] R. Knikker, D. Veynante, J. Rolon, C. Meneveau, Planar lase-induced fluorescence in a turbulent premixed flame to analyze large eddy simulation models, in: 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2000
[32] A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion, Proceedings of the Combustion Institute, Volume 29 (2002), pp. 2105-2111
[33] A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion, Physics of Fluids, Volume 16 (2004), pp. 91-94
[34] A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids A, Volume 12 (2000) no. 7, pp. 1843-1863
[35] J. Legier, D. Veynante, T. Poinsot, Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, in: Proceedings of the Summer Program, Center of Turbulence Research, France, 2000
Cité par Sources :
Commentaires - Politique