Comptes Rendus
Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions
[Comportement asymptotique des éléments propres pour des membranes vibrantes avec des couches très minces et très lourdes]
Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 777-782.

On considère les vibrations d'une membrane qui contient une très mince et très lourde inclusion placée autour d'une courbe γ. On suppose que la membrane occupe un domaine Ω2, tandis que l'inclusion occupe une couche ωϵΩ de largeur 2ε, la densité étant d'ordre O(ε−3). La densité est d'ordre O(1) en dehors de la petite inclusion : la masse est concentrée autour de γ. ε est un petit paramètre, ε∈(0,1). À l'aide des développements asymptotiques, nous décrivons le comportement, pour ε→0, des éléments propres (λε,uε) du problème spectral associé. En fait, nous obtenons les séries asymptotiques complètes pour les basses fréquences λε=O(ε2) et les moyennes fréquences λε=O(ε), ainsi que les fonctions propres correspondantes uε.

We consider the vibrations of a membrane that contains a very thin and heavy inclusion around a curve γ. We assume that the membrane occupies a domain Ω of 2. The inclusion occupies a layer-like domain ωϵΩ of width 2ε and it has a density of order O(ε−3). The density is of order O(1) outside this inclusion, the concentrated mass around the curve γ. ε is a positive parameter, ε∈(0,1). By means of asymptotic expansions, we describe the behaviour, as ε→0, of the eigenelements (λε,uε) of the associated spectral problem. We provide complete asymptotic series for the low frequencies λε=O(ε2), the medium frequencies λε=O(ε) and the corresponding eigenfunctions uε.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-0721(02)01531-0
Keywords: vibrations, concentrated masses, spectral analysis, low frequencies, medium frequencies
Mot clés : vibrations, masses concentrées, analyse spectrale, basses fréquences, moyennes fréquences

Yuri Golovaty 1 ; Delfina Gómez 2 ; Miguel Lobo 2 ; Eugenia Pérez 3

1 Department of Mechanics and Mathematics, Franko Lviv National University, Lviv, Ukraine
2 Departamento de Matemáticas, Estadı́stica y Computación, Universidad de Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain
3 Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain
@article{CRMECA_2002__330_11_777_0,
     author = {Yuri Golovaty and Delfina G\'omez and Miguel Lobo and Eugenia P\'erez},
     title = {Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {777--782},
     publisher = {Elsevier},
     volume = {330},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01531-0},
     language = {en},
}
TY  - JOUR
AU  - Yuri Golovaty
AU  - Delfina Gómez
AU  - Miguel Lobo
AU  - Eugenia Pérez
TI  - Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 777
EP  - 782
VL  - 330
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01531-0
LA  - en
ID  - CRMECA_2002__330_11_777_0
ER  - 
%0 Journal Article
%A Yuri Golovaty
%A Delfina Gómez
%A Miguel Lobo
%A Eugenia Pérez
%T Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions
%J Comptes Rendus. Mécanique
%D 2002
%P 777-782
%V 330
%N 11
%I Elsevier
%R 10.1016/S1631-0721(02)01531-0
%G en
%F CRMECA_2002__330_11_777_0
Yuri Golovaty; Delfina Gómez; Miguel Lobo; Eugenia Pérez. Asymptotics for the eigenelements of vibrating membranes with very heavy thin inclusions. Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 777-782. doi : 10.1016/S1631-0721(02)01531-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01531-0/

[1] M. Lobo; E. Pérez Vibrations of a membrane with many concentrated masses near the boundary, Math. Models Methods Appl. Sci, Volume 5 (1995) no. 5, pp. 565-585

[2] O.A. Oleinik; A.S. Shamaev; G.A. Yosifian Mathematical Problems in Elasticity and Homogenization, North-Holland, London, 1992

[3] J. Sanchez-Hubert; E. Sanchez-Palencia Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Heidelberg, 1989

[4] Yu.D. Golovaty; A.S. Lavrenyuk Asymptotic expansions of local eigenvibrations for plate with density perturbed in neighbourhood of one-dimensional manifold, Mat. Studii, Volume 13 (2000) no. 1, pp. 51-62

[5] H. Tchatat, Perturbations Spectrales pour des Systèmes avec Masses Concentrées, Thése 3eme cycle, Université Pierre et Marie Curie, Paris VI, Paris, 1984

[6] Yu.D. Golovaty, D. Gómez, M. Lobo, E. Pérez, Vibrating membranes with very thin heavy inclusions around curves, in preparation

Cité par Sources :

Commentaires - Politique