[Sur les problèmes locaux pour les systèmes vibratoires avec des masses concentrées]
In this review we collect certain results obtained in the last decades on vibrating systems with concentrated masses. In particular, we show the connection of the eigenvalues and eigenfunctions of the local problem with the low and high frequency vibrations of the original problem.
Ce rapport-ci contient quelques resultats obtenus tout au long des denières décades sur les systèmes vibratoires avec masses concentrées. Notamment, on met en evidence la connexion entre les éléments propres du problème local et les vibrations de basses fréquences et d'hautes fréquences du problème original.
Accepté le :
Publié le :
Mots-clés : Vibrations, Analyse spectrale, Masses concentrées, Fréquences basses, Fréquences hautes
Miguel Lobo 1 ; Eugenia Pérez 2
@article{CRMECA_2003__331_4_303_0, author = {Miguel Lobo and Eugenia P\'erez}, title = {Local problems for vibrating systems with concentrated masses: a~review}, journal = {Comptes Rendus. M\'ecanique}, pages = {303--317}, publisher = {Elsevier}, volume = {331}, number = {4}, year = {2003}, doi = {10.1016/S1631-0721(03)00058-5}, language = {en}, }
Miguel Lobo; Eugenia Pérez. Local problems for vibrating systems with concentrated masses: a review. Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 303-317. doi : 10.1016/S1631-0721(03)00058-5. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00058-5/
[1] Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Trend in Applications of Pure Mathematics to Mechanics, Lecture Notes in Phys., 195, Springer-Verlag, Berlin, 1984, pp. 346-368
[2] Vibration de systèmes élastiques avec des masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino, Volume 42 (1984) no. 3, pp. 43-63
[3] Homogenization problems in elasticity. Spectra of singularly perturbed operators (R.J. Knops; A.A. Lacey, eds.), Non-Classical Continuum Mechanics, Cambridge University Press, New York, 1987, pp. 81-95
[4] Eigenoscillations of a string with an additional mass, Siberian Math. J., Volume 29 (1988) no. 5, pp. 744-760
[5] Perturbation of the eigenvalues of a membrane with a concentrated mass, Quart. Appl. Math., Volume XLVII (1989) no. 1, pp. 93-103
[6] Perturbation des valeurs propres pour des systèmes avec masse concentrée, C. R. Acad. Sci. Paris, Sér. II, Volume 309 (1989), pp. 507-510
[7] Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Heidelberg, 1989
[8] On vibrations of a membrane with concentrated masses, Bull. Sci. Math. Sér. 2, Volume 115 (1991), pp. 1-27
[9] Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992
[10] Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions, Math. Model Numer. Anal., Volume 27 (1993) no. 6, pp. 777-799
[11] Spectral properties of oscillatory systems with adjoined masses, Trans. Moscow Math. Soc., Volume 54 (1993), pp. 23-59
[12] On vibrations of a body with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 2, pp. 249-273
[13] Vibrations of a body with many concentrated masses near the boundary: High frequency vibrations (E. Sanchez-Palencia, ed.), Spectral Analysis of Complex Structures, Hermann, Paris, 1995, pp. 85-101
[14] Vibrations of a membrane with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 5 (1995) no. 5, pp. 565-585
[15] On the local vibrations for systems with many concentrated masses, C. R. Acad. Sci. Paris, Sér. IIb, Volume 324 (1997), pp. 323-329
[16] On the eigenfunctions associated with the high frequencies in systems with a concentrated mass, J. Math. Pures Appl., Volume 78 (1999), pp. 841-865
[17] The skin effect in vibrating systems with many concentrated masses, Math. Methods Appl. Sci., Volume 24 (2001), pp. 59-80
[18] On the whispering gallery modes on the interfaces of membranescomposed of two materials with very different densities, Math. Models Methods Appl. Sci., Volume 13 (2003) no. 1, pp. 75-98
[19] On eigenvibrations of a body with light concentrated masses on the surface, Russian Math. Surveys, Volume 57 (2002) no. 6, pp. 195-196
[20] On the vibrations of a plate with a concentrated mass and very small thickness, Math. Methods Appl. Sci., Volume 26 (2003), pp. 27-65
[21] E. Pérez, Vibrating systems with concentrated masses: on the local problem and the low frequencies, in: C. Constanda, A. Larguillier, M. Ahues (Eds.), Proceedings of the 7th International Conference on Integral Methods in Sciences and Engineering, Birkhäuser, 2003, to appear
[22] Asymptotics for the eigenelements of vibrating membranes with very heavy thing inclusions, C. R. Mécanique, Volume 330 (2002) no. 11, pp. 777-782
[23] Vibrations of a thick periodic junction with concentrated masses, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 6, pp. 1001-1027
[24] High frequency vibrations in a stiff problem, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 2, pp. 291-311
[25] Asymptotic behavior of an elastic body with a surface having small stuck regions, RAIRO Modél. Math. Anal. Numér., Volume 22 (1988) no. 4, pp. 609-624
[26] Homogénéisation de frontieres par epi-convergence en élasticité linéaire, RAIRO Modél. Math. Anal. Numér., Volume 24 (1990) no. 1, pp. 5-26
[27] Boundary homogenization of certain elliptic problems for cylindrical bodies, Bull. Sci. Math. Sér. IIb, Volume 116 (1992), pp. 399-426
[28] Un terme étrange venu d'ailleurs (H. Brezis; J.-L. Lions, eds.), Collège de France Séminar, Vol. II & III, Res. Notes Math., 60 & 70, Pitman, London, 1982, pp. 98-138 (154–178)
[29] On homogenization of solutions of boundary value problems in domains, perforated along manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 25 (1998), pp. 611-629
[30] Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966
[31] Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980
[32] On spectral pollution in the finite element approximation of thin elastic “membrane” shells, Numer. Math., Volume 75 (1997) no. 4, pp. 473-500
[33] M. Lobo, S.A. Nazarov, E. Pérez, Eigenoscillations of contrastly non-homogeneous elastic body. Asymptotic and uniform estimates for the eigenvalues, in preparation
[34] Convergence for Functions and Operators, Pitman, London, 1984
[35] Regular degeneration and boundary layer for linear differential equations with small parameter, Trans. Amer. Math. Soc. Ser. 2, Volume 20 (1957), pp. 239-364
[36] Modes and quasimodes, Funct. Anal. Appl., Volume 6 (1972) no. 2, pp. 94-101
[37] Semiclassical asymptotics of eigenfunctions (M.V. Fedoryuk, ed.), Partial Differential Equations V, Springer-Verlag, Heidelberg, 1999, pp. 133-171
[38] Les distributions, Tome III, Dunod, Paris, 1965
[39] Asymptotic Theory of Thin Plates and Rods, Vol. 1. Dimension Reduction and Integral Estimates, Novosibirsk, Nauchnaya Kniga, 2002
[40] Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987
[41] Distributions and the Boundary Values of Analytic Functions, Academic Press, New York, 1966
- Approximation of eigenvalues and eigenfunctions of the diffusion operator in a domain containing thin tubes by asymptotic domain decomposition method, Applicable Analysis, Volume 104 (2025) no. 3, pp. 419-441 | DOI:10.1080/00036811.2024.2368699 | Zbl:8005694
- On eigenvibrations of branched structures with heterogeneous mass density, Journal of Mathematical Analysis and Applications, Volume 549 (2025) no. 2, p. 26 (Id/No 129586) | DOI:10.1016/j.jmaa.2025.129586 | Zbl:8042390
- "Far-field interaction" of concentrated masses in two-dimensional Neumann and Dirichlet problems, Izvestiya: Mathematics, Volume 87 (2023) no. 1, p. 61 | DOI:10.4213/im9262e
- "Дальнодействие" концентрированных масс в двумерных задачах Неймана и Дирихле, Известия Российской академии наук. Серия математическая, Volume 87 (2023) no. 1, p. 65 | DOI:10.4213/im9262
- Membranes with thin and heavy inclusions: asymptotics of spectra, Asymptotic Analysis, Volume 130 (2022) no. 1-2, pp. 23-51 | DOI:10.3233/asy-211743 | Zbl:1498.35529
- An uncoupled limit model for a high-contrast problem in a thin multi-structure, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 33 (2022) no. 1, pp. 39-64 | DOI:10.4171/rlm/963 | Zbl:1497.35152
- Asymptotic approximations for eigenvalues and eigenfunctions of a spectral problem in a thin graph-like junction with a concentrated mass in the node, Analysis and Applications (Singapore), Volume 19 (2021) no. 5, pp. 875-939 | DOI:10.1142/s0219530520500219 | Zbl:1476.35023
- Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands, Journal of Differential Equations, Volume 270 (2021), pp. 1160-1195 | DOI:10.1016/j.jde.2020.09.011 | Zbl:1451.35016
- Limit models for thin heterogeneous structures with high contrast, Journal of Differential Equations, Volume 302 (2021), pp. 37-63 | DOI:10.1016/j.jde.2021.08.032 | Zbl:1473.35162
- Asymptotic analysis of the high frequencies for the Laplace operator in a thin t-like shaped structure, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 134 (2020), pp. 299-327 | DOI:10.1016/j.matpur.2019.06.005 | Zbl:1435.35265
- Spectral gaps for the Dirichlet-Laplacian in a 3-D waveguide periodically perturbed by a family of concentrated masses, Mathematische Nachrichten, Volume 291 (2018) no. 4, pp. 556-575 | DOI:10.1002/mana.201600270 | Zbl:1393.35129
- On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary, Revista Matemática Complutense, Volume 31 (2018) no. 1, pp. 1-62 | DOI:10.1007/s13163-017-0243-4 | Zbl:1382.35025
- On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, pp. 2928-2967 | DOI:10.1137/17m1118221 | Zbl:1388.35184
- Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 2, p. 23 (Id/No 35) | DOI:10.1007/s00033-018-0927-8 | Zbl:1402.35033
- Localization effect for Dirichlet eigenfunctions in thin non-smooth domains, Transactions of the American Mathematical Society, Volume 368 (2016) no. 7, pp. 4787-4829 | DOI:10.1090/tran/6625 | Zbl:1338.35318
- Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems, Functional Analysis and its Applications, Volume 49 (2015) no. 1, pp. 25-39 | DOI:10.1007/s10688-015-0080-5 | Zbl:1325.47093
- Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses, Izvestiya: Mathematics, Volume 79 (2015) no. 3, p. 467 | DOI:10.1070/im2015v079n03abeh002751
- Asymptotic expansions for eigenvalues of the Steklov problem in singularly perturbed domains, St. Petersburg Mathematical Journal, Volume 26 (2015) no. 2, pp. 273-318 | DOI:10.1090/s1061-0022-2015-01339-3 | Zbl:1456.35149
- Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube, Transactions of the Moscow Mathematical Society, Volume 2015 (2015), pp. 1-53 | DOI:10.1090/mosc/243 | Zbl:1336.35267
- Spectrum of a diffusion operator with coefficient changing sign over a small inclusion, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 5, pp. 2173-2196 | DOI:10.1007/s00033-015-0559-1 | Zbl:1328.35132
- Собственные колебания густых каскадных соединений со "сверхтяжелыми" концентрированными массами, Известия Российской академии наук. Серия математическая, Volume 79 (2015) no. 3, p. 41 | DOI:10.4213/im8238
- Моделирование сингулярно возмущенной спектральной задачи при помощи самосопряженных расширений операторов предельных задач, Функциональный анализ и его приложения, Volume 49 (2015) no. 1, p. 31 | DOI:10.4213/faa3171
- Asymptotic Expansions of Eigenvalues and Eigenfunctions of a Vibrating System With Stiff Light-Weight Inclusions, Journal of Mathematical Sciences, Volume 198 (2014) no. 1, p. 13 | DOI:10.1007/s10958-014-1769-3
- Spatial-skin effect for eigenvibrations of a thick cascade junction with 'heavy' concentrated masses, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 1, pp. 56-74 | DOI:10.1002/mma.2785 | Zbl:1282.35037
- On new types of vibrations of thick cascade junctions with concentrated masses, Doklady Mathematics, Volume 87 (2013) no. 1, pp. 102-106 | DOI:10.1134/s1064562413010389 | Zbl:1267.74057
- Vibrating systems with rigid light-weight inclusions: asymptotics of the spectrum and eigenspaces, Ukrainian Mathematical Journal, Volume 64 (2013) no. 10, pp. 1495-1513 | DOI:10.1007/s11253-013-0731-8 | Zbl:1302.35153
- Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions, Computational Mathematics and Mathematical Physics, Volume 52 (2012) no. 11, p. 1574 | DOI:10.1134/s0965542512110097
- On asymptotic analysis of spectral problems in elasticity, Latin American Journal of Solids and Structures, Volume 8 (2011) no. 1, p. 27 | DOI:10.1590/s1679-78252011000100003
- REINFORCEMENT OF THE POISSON EQUATION BY A THIN LAYER, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 05, p. 1153 | DOI:10.1142/s0218202511005283
- Spectral stiff problems in domains surrounded by thin stiff and heavy bands: Local effects for eigenfunctions, Networks Heterogeneous Media, Volume 6 (2011) no. 1, p. 1 | DOI:10.3934/nhm.2011.6.1
- Localization near the corner point of the principal eigenfunction of the Dirichlet problem in a domain with thin edging, Siberian Mathematical Journal, Volume 52 (2011) no. 2, pp. 274-290 | DOI:10.1134/s003744661102011x | Zbl:1221.35257
- High-Frequency Vibrations of Systems with Concentrated Masses Along Planes, Integral Methods in Science and Engineering, Volume 1 (2010), p. 149 | DOI:10.1007/978-0-8176-4899-2_15
- On Different Quasimodes for the Homogenization of Steklov-Type Eigenvalue Problems, Integral Methods in Science and Engineering, Volume 1 (2010), p. 193 | DOI:10.1007/978-0-8176-4899-2_20
- Long time approximations for solutions of wave equations associated with the Steklov spectral homogenization problems, Mathematical Methods in the Applied Sciences, Volume 33 (2010) no. 11, pp. 1356-1371 | DOI:10.1002/mma.1256 | Zbl:1196.35149
- The Localization Effect for Eigenfunctions of the Mixed Boundary Value Problem in a Thin Cylinder with Distorted Ends, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2581 | DOI:10.1137/090755680
- Gaps in the essential spectrum of periodic elastic waveguides, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 89 (2009) no. 9, p. 729 | DOI:10.1002/zamm.200800221
- On Quasimodes for Spectral Problems Arising in Vibrating Systems with Concentrated Masses, Integral Methods in Science and Engineering (2008), p. 181 | DOI:10.1007/978-0-8176-4671-4_21
- Long time approximations for solutions of wave equations via standing waves from quasimodes, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 90 (2008) no. 4, pp. 387-411 | DOI:10.1016/j.matpur.2008.06.003 | Zbl:1159.47057
- Formal asymptotics of eigenmodes for oscillating elastic spatial bodies with concentrated masses, Journal of Mathematical Sciences (New York), Volume 148 (2008) no. 5, pp. 650-674 | DOI:10.1007/s10958-008-0015-2 | Zbl:1400.74044
- Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution, St. Petersburg Mathematical Journal, Volume 19 (2008) no. 2, pp. 297-326 | DOI:10.1090/s1061-0022-08-01000-5 | Zbl:1156.35012
- Neumann problem in angular regions with periodic and parabolic perturbations of the boundary, Transactions of the Moscow Mathematical Society, Volume 2008 (2008), pp. 153-208 | DOI:10.1090/s0077-1554-08-00173-8 | Zbl:1200.35085
- Асимптотика решений и моделирование задач теории упругости в области с быстроосциллирующей границей, Известия Российской академии наук. Серия математическая, Volume 72 (2008) no. 3, p. 103 | DOI:10.4213/im2600
- Asymptotic partial decomposition of domain for spectral problems in rod structures, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 87 (2007) no. 1, pp. 1-36 | DOI:10.1016/j.matpur.2006.10.003 | Zbl:1107.74020
- On the Structure of the Eigenfunctions of a Vibrating Plate with a Concentrated Mass and Very Small Thickness, Integral Methods in Science and Engineering (2006), p. 47 | DOI:10.1007/0-8176-4450-4_5
- Spectral stiff problems in domains surrounded by thin bands: asymptotic and uniform estimates for eigenvalues, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 85 (2006) no. 4, pp. 598-632 | DOI:10.1016/j.matpur.2005.10.013 | Zbl:1168.35310
- Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 86 (2006) no. 5, pp. 369-402 | DOI:10.1016/j.matpur.2006.08.003 | Zbl:1241.35010
- Remarks on vibrating systems with many concentrated masses and vibrating systems with parts of negligible mass, Multi-scale problems and asymptotic analysis. Proceedings of the midnight sun Narvik conference (satellite conference of the fourth European congress of mathematics), Narvik, Norway, June 22–26, 2004, Tokyo: Gakkōtosho, 2006, pp. 311-323 | Zbl:1425.74227
- Spectral convergence for vibrating systems containing a part with negligible mass, Mathematical Methods in the Applied Sciences, Volume 28 (2005) no. 10, p. 1173 | DOI:10.1002/mma.610
- ON VIBRATING MEMBRANES WITH VERY HEAVY THIN INCLUSIONS, Mathematical Models and Methods in Applied Sciences, Volume 14 (2004) no. 07, p. 987 | DOI:10.1142/s0218202504003520
Cité par 49 documents. Sources : Crossref, zbMATH
Commentaires - Politique