Comptes Rendus
Local problems for vibrating systems with concentrated masses: a review
[Sur les problèmes locaux pour les systèmes vibratoires avec des masses concentrées]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 303-317.

In this review we collect certain results obtained in the last decades on vibrating systems with concentrated masses. In particular, we show the connection of the eigenvalues and eigenfunctions of the local problem with the low and high frequency vibrations of the original problem.

Ce rapport-ci contient quelques resultats obtenus tout au long des denières décades sur les systèmes vibratoires avec masses concentrées. Notamment, on met en evidence la connexion entre les éléments propres du problème local et les vibrations de basses fréquences et d'hautes fréquences du problème original.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(03)00058-5
Keywords: Vibrations, Spectral analysis, Concentrated masses, Low frequencies, High frequencies
Mots-clés : Vibrations, Analyse spectrale, Masses concentrées, Fréquences basses, Fréquences hautes

Miguel Lobo 1 ; Eugenia Pérez 2

1 Departamento de Matemáticas, Estadı́stica y Computación, Universidad de Cantabria, Avenida de los Castros s/n. 39005 Santander, Spain
2 Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avenida de los Castros s/n., 39005 Santander, Spain
@article{CRMECA_2003__331_4_303_0,
     author = {Miguel Lobo and Eugenia P\'erez},
     title = {Local problems for vibrating systems with concentrated masses: a~review},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {303--317},
     publisher = {Elsevier},
     volume = {331},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00058-5},
     language = {en},
}
TY  - JOUR
AU  - Miguel Lobo
AU  - Eugenia Pérez
TI  - Local problems for vibrating systems with concentrated masses: a review
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 303
EP  - 317
VL  - 331
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00058-5
LA  - en
ID  - CRMECA_2003__331_4_303_0
ER  - 
%0 Journal Article
%A Miguel Lobo
%A Eugenia Pérez
%T Local problems for vibrating systems with concentrated masses: a review
%J Comptes Rendus. Mécanique
%D 2003
%P 303-317
%V 331
%N 4
%I Elsevier
%R 10.1016/S1631-0721(03)00058-5
%G en
%F CRMECA_2003__331_4_303_0
Miguel Lobo; Eugenia Pérez. Local problems for vibrating systems with concentrated masses: a review. Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 303-317. doi : 10.1016/S1631-0721(03)00058-5. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00058-5/

[1] E. Sanchez-Palencia Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Trend in Applications of Pure Mathematics to Mechanics, Lecture Notes in Phys., 195, Springer-Verlag, Berlin, 1984, pp. 346-368

[2] E. Sanchez-Palencia; H. Tchatat Vibration de systèmes élastiques avec des masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino, Volume 42 (1984) no. 3, pp. 43-63

[3] O.A. Oleinik Homogenization problems in elasticity. Spectra of singularly perturbed operators (R.J. Knops; A.A. Lacey, eds.), Non-Classical Continuum Mechanics, Cambridge University Press, New York, 1987, pp. 81-95

[4] Yu.D. Golovaty; S.A. Nazarov; O.A. Oleinik; T.S. Soboleva Eigenoscillations of a string with an additional mass, Siberian Math. J., Volume 29 (1988) no. 5, pp. 744-760

[5] C. Leal; J. Sanchez-Hubert Perturbation of the eigenvalues of a membrane with a concentrated mass, Quart. Appl. Math., Volume XLVII (1989) no. 1, pp. 93-103

[6] J. Sanchez-Hubert Perturbation des valeurs propres pour des systèmes avec masse concentrée, C. R. Acad. Sci. Paris, Sér. II, Volume 309 (1989), pp. 507-510

[7] J. Sanchez-Hubert; E. Sanchez-Palencia Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Heidelberg, 1989

[8] O.A. Oleinik; J. Sanchez-Hubert; G.A. Yosifian On vibrations of a membrane with concentrated masses, Bull. Sci. Math. Sér. 2, Volume 115 (1991), pp. 1-27

[9] O.A. Oleinik; A.S. Shamaev; G.A. Yosifian Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992

[10] S.A. Nazarov Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions, Math. Model Numer. Anal., Volume 27 (1993) no. 6, pp. 777-799

[11] Yu.D. Golovaty Spectral properties of oscillatory systems with adjoined masses, Trans. Moscow Math. Soc., Volume 54 (1993), pp. 23-59

[12] M. Lobo; E. Pérez On vibrations of a body with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 2, pp. 249-273

[13] M. Lobo; E. Pérez Vibrations of a body with many concentrated masses near the boundary: High frequency vibrations (E. Sanchez-Palencia, ed.), Spectral Analysis of Complex Structures, Hermann, Paris, 1995, pp. 85-101

[14] M. Lobo; E. Pérez Vibrations of a membrane with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 5 (1995) no. 5, pp. 565-585

[15] M. Lobo; E. Pérez On the local vibrations for systems with many concentrated masses, C. R. Acad. Sci. Paris, Sér. IIb, Volume 324 (1997), pp. 323-329

[16] D. Gómez; M. Lobo; E. Pérez On the eigenfunctions associated with the high frequencies in systems with a concentrated mass, J. Math. Pures Appl., Volume 78 (1999), pp. 841-865

[17] M. Lobo; E. Pérez The skin effect in vibrating systems with many concentrated masses, Math. Methods Appl. Sci., Volume 24 (2001), pp. 59-80

[18] E. Pérez On the whispering gallery modes on the interfaces of membranescomposed of two materials with very different densities, Math. Models Methods Appl. Sci., Volume 13 (2003) no. 1, pp. 75-98

[19] G.A. Chechkin; E. Pérez; E.I. Yablokova On eigenvibrations of a body with light concentrated masses on the surface, Russian Math. Surveys, Volume 57 (2002) no. 6, pp. 195-196

[20] D. Gómez; M. Lobo; E. Pérez On the vibrations of a plate with a concentrated mass and very small thickness, Math. Methods Appl. Sci., Volume 26 (2003), pp. 27-65

[21] E. Pérez, Vibrating systems with concentrated masses: on the local problem and the low frequencies, in: C. Constanda, A. Larguillier, M. Ahues (Eds.), Proceedings of the 7th International Conference on Integral Methods in Sciences and Engineering, Birkhäuser, 2003, to appear

[22] Yu.D. Golovaty; D. Gómez; M. Lobo; E. Pérez Asymptotics for the eigenelements of vibrating membranes with very heavy thing inclusions, C. R. Mécanique, Volume 330 (2002) no. 11, pp. 777-782

[23] T. Melnyk Vibrations of a thick periodic junction with concentrated masses, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 6, pp. 1001-1027

[24] M. Lobo; E. Pérez High frequency vibrations in a stiff problem, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 2, pp. 291-311

[25] M. Lobo; E. Pérez Asymptotic behavior of an elastic body with a surface having small stuck regions, RAIRO Modél. Math. Anal. Numér., Volume 22 (1988) no. 4, pp. 609-624

[26] A. Brillard; M. Lobo; E. Pérez Homogénéisation de frontieres par epi-convergence en élasticité linéaire, RAIRO Modél. Math. Anal. Numér., Volume 24 (1990) no. 1, pp. 5-26

[27] M. Lobo; E. Pérez Boundary homogenization of certain elliptic problems for cylindrical bodies, Bull. Sci. Math. Sér. IIb, Volume 116 (1992), pp. 399-426

[28] D. Cioranescu; F. Murat Un terme étrange venu d'ailleurs (H. Brezis; J.-L. Lions, eds.), Collège de France Séminar, Vol. II & III, Res. Notes Math., 60 & 70, Pitman, London, 1982, pp. 98-138 (154–178)

[29] M. Lobo; O.A. Oleinik; T.A. Shaposhnikova; E. Pérez On homogenization of solutions of boundary value problems in domains, perforated along manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 25 (1998), pp. 611-629

[30] T. Kato Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966

[31] E. Sanchez-Palencia Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980

[32] J. Rappaz; J. Sanchez-Hubert; E. Sanchez-Palencia; D. Vassiliev On spectral pollution in the finite element approximation of thin elastic “membrane” shells, Numer. Math., Volume 75 (1997) no. 4, pp. 473-500

[33] M. Lobo, S.A. Nazarov, E. Pérez, Eigenoscillations of contrastly non-homogeneous elastic body. Asymptotic and uniform estimates for the eigenvalues, in preparation

[34] H. Attouch Convergence for Functions and Operators, Pitman, London, 1984

[35] M.I. Visik; L.A. Lusternik Regular degeneration and boundary layer for linear differential equations with small parameter, Trans. Amer. Math. Soc. Ser. 2, Volume 20 (1957), pp. 239-364

[36] V.I. Arnold Modes and quasimodes, Funct. Anal. Appl., Volume 6 (1972) no. 2, pp. 94-101

[37] V.F. Lazutkin Semiclassical asymptotics of eigenfunctions (M.V. Fedoryuk, ed.), Partial Differential Equations V, Springer-Verlag, Heidelberg, 1999, pp. 133-171

[38] I.M. Guelfand; G.E. Chilov Les distributions, Tome III, Dunod, Paris, 1965

[39] S.A. Nazarov Asymptotic Theory of Thin Plates and Rods, Vol. 1. Dimension Reduction and Integral Estimates, Novosibirsk, Nauchnaya Kniga, 2002

[40] D. Leguillon; E. Sanchez-Palencia Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987

[41] E.L. Beltrami; M.R. Wholers Distributions and the Boundary Values of Analytic Functions, Academic Press, New York, 1966

  • Andrey Amosov; Delfina Gómez; Grigory Panasenko; Maria-Eugenia Pérez-Martínez Approximation of eigenvalues and eigenfunctions of the diffusion operator in a domain containing thin tubes by asymptotic domain decomposition method, Applicable Analysis, Volume 104 (2025) no. 3, pp. 419-441 | DOI:10.1080/00036811.2024.2368699 | Zbl:8005694
  • Yuriy Golovaty; Delfina Gómez; Maria-Eugenia Pérez-Martínez On eigenvibrations of branched structures with heterogeneous mass density, Journal of Mathematical Analysis and Applications, Volume 549 (2025) no. 2, p. 26 (Id/No 129586) | DOI:10.1016/j.jmaa.2025.129586 | Zbl:8042390
  • Sergei Aleksandrovich Nazarov "Far-field interaction" of concentrated masses in two-dimensional Neumann and Dirichlet problems, Izvestiya: Mathematics, Volume 87 (2023) no. 1, p. 61 | DOI:10.4213/im9262e
  • Sergei Aleksandrovich Nazarov "Дальнодействие" концентрированных масс в двумерных задачах Неймана и Дирихле, Известия Российской академии наук. Серия математическая, Volume 87 (2023) no. 1, p. 65 | DOI:10.4213/im9262
  • Yuriy Golovaty Membranes with thin and heavy inclusions: asymptotics of spectra, Asymptotic Analysis, Volume 130 (2022) no. 1-2, pp. 23-51 | DOI:10.3233/asy-211743 | Zbl:1498.35529
  • Umberto De Maio; Antonio Gaudiello; Ali Sili An uncoupled limit model for a high-contrast problem in a thin multi-structure, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 33 (2022) no. 1, pp. 39-64 | DOI:10.4171/rlm/963 | Zbl:1497.35152
  • Taras Mel'nyk Asymptotic approximations for eigenvalues and eigenfunctions of a spectral problem in a thin graph-like junction with a concentrated mass in the node, Analysis and Applications (Singapore), Volume 19 (2021) no. 5, pp. 875-939 | DOI:10.1142/s0219530520500219 | Zbl:1476.35023
  • Delfina Gómez; Sergei A. Nazarov; Maria-Eugenia Pérez-Martínez Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands, Journal of Differential Equations, Volume 270 (2021), pp. 1160-1195 | DOI:10.1016/j.jde.2020.09.011 | Zbl:1451.35016
  • A. Gaudiello; A. Sili Limit models for thin heterogeneous structures with high contrast, Journal of Differential Equations, Volume 302 (2021), pp. 37-63 | DOI:10.1016/j.jde.2021.08.032 | Zbl:1473.35162
  • Antonio Gaudiello; Delfina Gómez; Maria-Eugenia Pérez-Martínez Asymptotic analysis of the high frequencies for the Laplace operator in a thin t-like shaped structure, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 134 (2020), pp. 299-327 | DOI:10.1016/j.matpur.2019.06.005 | Zbl:1435.35265
  • Fedor L. Bakharev; M. Eugenia Pérez Spectral gaps for the Dirichlet-Laplacian in a 3-D waveguide periodically perturbed by a family of concentrated masses, Mathematische Nachrichten, Volume 291 (2018) no. 4, pp. 556-575 | DOI:10.1002/mana.201600270 | Zbl:1393.35129
  • Sergei A. Nazarov; M. Eugenia Pérez On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary, Revista Matemática Complutense, Volume 31 (2018) no. 1, pp. 1-62 | DOI:10.1007/s13163-017-0243-4 | Zbl:1382.35025
  • Matteo Dalla Riva; Luigi Provenzano On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, pp. 2928-2967 | DOI:10.1137/17m1118221 | Zbl:1388.35184
  • D. Gómez; S. A. Nazarov; M. E. Pérez Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 2, p. 23 (Id/No 35) | DOI:10.1007/s00033-018-0927-8 | Zbl:1402.35033
  • S. A. Nazarov; E. Pérez; J. Taskinen Localization effect for Dirichlet eigenfunctions in thin non-smooth domains, Transactions of the American Mathematical Society, Volume 368 (2016) no. 7, pp. 4787-4829 | DOI:10.1090/tran/6625 | Zbl:1338.35318
  • S. A. Nazarov Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems, Functional Analysis and its Applications, Volume 49 (2015) no. 1, pp. 25-39 | DOI:10.1007/s10688-015-0080-5 | Zbl:1325.47093
  • T A Mel'nyk; G A Chechkin Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses, Izvestiya: Mathematics, Volume 79 (2015) no. 3, p. 467 | DOI:10.1070/im2015v079n03abeh002751
  • Sergei Aleksandrovich Nazarov Asymptotic expansions for eigenvalues of the Steklov problem in singularly perturbed domains, St. Petersburg Mathematical Journal, Volume 26 (2015) no. 2, pp. 273-318 | DOI:10.1090/s1061-0022-2015-01339-3 | Zbl:1456.35149
  • S. A. Nazarov Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube, Transactions of the Moscow Mathematical Society, Volume 2015 (2015), pp. 1-53 | DOI:10.1090/mosc/243 | Zbl:1336.35267
  • Lucas Chesnel; Xavier Claeys; Sergei A. Nazarov Spectrum of a diffusion operator with coefficient changing sign over a small inclusion, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 5, pp. 2173-2196 | DOI:10.1007/s00033-015-0559-1 | Zbl:1328.35132
  • Taras Anatol'evich Mel'nik; Gregory Aleksandrovich Chechkin Собственные колебания густых каскадных соединений со "сверхтяжелыми" концентрированными массами, Известия Российской академии наук. Серия математическая, Volume 79 (2015) no. 3, p. 41 | DOI:10.4213/im8238
  • Sergei Aleksandrovich Nazarov Моделирование сингулярно возмущенной спектральной задачи при помощи самосопряженных расширений операторов предельных задач, Функциональный анализ и его приложения, Volume 49 (2015) no. 1, p. 31 | DOI:10.4213/faa3171
  • V. M. Hut Asymptotic Expansions of Eigenvalues and Eigenfunctions of a Vibrating System With Stiff Light-Weight Inclusions, Journal of Mathematical Sciences, Volume 198 (2014) no. 1, p. 13 | DOI:10.1007/s10958-014-1769-3
  • G. A. Chechkin; T. A. Mel'nyk Spatial-skin effect for eigenvibrations of a thick cascade junction with 'heavy' concentrated masses, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 1, pp. 56-74 | DOI:10.1002/mma.2785 | Zbl:1282.35037
  • T. A. Mel'nik; G. A. Chechkin On new types of vibrations of thick cascade junctions with concentrated masses, Doklady Mathematics, Volume 87 (2013) no. 1, pp. 102-106 | DOI:10.1134/s1064562413010389 | Zbl:1267.74057
  • Yu. D. Holovatyi; V. M. Hut Vibrating systems with rigid light-weight inclusions: asymptotics of the spectrum and eigenspaces, Ukrainian Mathematical Journal, Volume 64 (2013) no. 10, pp. 1495-1513 | DOI:10.1007/s11253-013-0731-8 | Zbl:1302.35153
  • S. A. Nazarov Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions, Computational Mathematics and Mathematical Physics, Volume 52 (2012) no. 11, p. 1574 | DOI:10.1134/s0965542512110097
  • S.A. Nazarov; J. Sokolowski On asymptotic analysis of spectral problems in elasticity, Latin American Journal of Solids and Structures, Volume 8 (2011) no. 1, p. 27 | DOI:10.1590/s1679-78252011000100003
  • JINGYU LI; KAIJUN ZHANG REINFORCEMENT OF THE POISSON EQUATION BY A THIN LAYER, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 05, p. 1153 | DOI:10.1142/s0218202511005283
  • Delfina Gómez; Sergey A. Nazarov; Eugenia Pérez Spectral stiff problems in domains surrounded by thin stiff and heavy bands: Local effects for eigenfunctions, Networks Heterogeneous Media, Volume 6 (2011) no. 1, p. 1 | DOI:10.3934/nhm.2011.6.1
  • S. A. Nazarov Localization near the corner point of the principal eigenfunction of the Dirichlet problem in a domain with thin edging, Siberian Mathematical Journal, Volume 52 (2011) no. 2, pp. 274-290 | DOI:10.1134/s003744661102011x | Zbl:1221.35257
  • D. Gömez; M. Lobo; M. E. Pérez High-Frequency Vibrations of Systems with Concentrated Masses Along Planes, Integral Methods in Science and Engineering, Volume 1 (2010), p. 149 | DOI:10.1007/978-0-8176-4899-2_15
  • M. Lobo; M. E. Pérez On Different Quasimodes for the Homogenization of Steklov-Type Eigenvalue Problems, Integral Methods in Science and Engineering, Volume 1 (2010), p. 193 | DOI:10.1007/978-0-8176-4899-2_20
  • Miguel Lobo; M. Eugenia Pérez Long time approximations for solutions of wave equations associated with the Steklov spectral homogenization problems, Mathematical Methods in the Applied Sciences, Volume 33 (2010) no. 11, pp. 1356-1371 | DOI:10.1002/mma.1256 | Zbl:1196.35149
  • G. Cardone; T. Durante; S. A. Nazarov The Localization Effect for Eigenfunctions of the Mixed Boundary Value Problem in a Thin Cylinder with Distorted Ends, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2581 | DOI:10.1137/090755680
  • C. Cardone; V. Minutolo; S.A. Nazarov Gaps in the essential spectrum of periodic elastic waveguides, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 89 (2009) no. 9, p. 729 | DOI:10.1002/zamm.200800221
  • E. Pérez On Quasimodes for Spectral Problems Arising in Vibrating Systems with Concentrated Masses, Integral Methods in Science and Engineering (2008), p. 181 | DOI:10.1007/978-0-8176-4671-4_21
  • Eugenia Pérez Long time approximations for solutions of wave equations via standing waves from quasimodes, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 90 (2008) no. 4, pp. 387-411 | DOI:10.1016/j.matpur.2008.06.003 | Zbl:1159.47057
  • D. Gomez; S. A. Nazarov; M.-E. Perez Formal asymptotics of eigenmodes for oscillating elastic spatial bodies with concentrated masses, Journal of Mathematical Sciences (New York), Volume 148 (2008) no. 5, pp. 650-674 | DOI:10.1007/s10958-008-0015-2 | Zbl:1400.74044
  • S. A. Nazarov Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution, St. Petersburg Mathematical Journal, Volume 19 (2008) no. 2, pp. 297-326 | DOI:10.1090/s1061-0022-08-01000-5 | Zbl:1156.35012
  • S. A. Nazarov Neumann problem in angular regions with periodic and parabolic perturbations of the boundary, Transactions of the Moscow Mathematical Society, Volume 2008 (2008), pp. 153-208 | DOI:10.1090/s0077-1554-08-00173-8 | Zbl:1200.35085
  • Сергей Александрович Назаров; Sergei Aleksandrovich Nazarov Асимптотика решений и моделирование задач теории упругости в области с быстроосциллирующей границей, Известия Российской академии наук. Серия математическая, Volume 72 (2008) no. 3, p. 103 | DOI:10.4213/im2600
  • G. P. Panasenko; E. Pérez Asymptotic partial decomposition of domain for spectral problems in rod structures, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 87 (2007) no. 1, pp. 1-36 | DOI:10.1016/j.matpur.2006.10.003 | Zbl:1107.74020
  • Delfina Gómez; Miguel Lobo; Eugenia Pérez On the Structure of the Eigenfunctions of a Vibrating Plate with a Concentrated Mass and Very Small Thickness, Integral Methods in Science and Engineering (2006), p. 47 | DOI:10.1007/0-8176-4450-4_5
  • D. Gómez; M. Lobo; S. A. Nazarov; E. Pérez Spectral stiff problems in domains surrounded by thin bands: asymptotic and uniform estimates for eigenvalues, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 85 (2006) no. 4, pp. 598-632 | DOI:10.1016/j.matpur.2005.10.013 | Zbl:1168.35310
  • D. Gómez; M. Lobo; S. A. Nazarov; E. Pérez Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 86 (2006) no. 5, pp. 369-402 | DOI:10.1016/j.matpur.2006.08.003 | Zbl:1241.35010
  • Eugenia Pérez Remarks on vibrating systems with many concentrated masses and vibrating systems with parts of negligible mass, Multi-scale problems and asymptotic analysis. Proceedings of the midnight sun Narvik conference (satellite conference of the fourth European congress of mathematics), Narvik, Norway, June 22–26, 2004, Tokyo: Gakkōtosho, 2006, pp. 311-323 | Zbl:1425.74227
  • Eugenia Pérez Spectral convergence for vibrating systems containing a part with negligible mass, Mathematical Methods in the Applied Sciences, Volume 28 (2005) no. 10, p. 1173 | DOI:10.1002/mma.610
  • YU. D. GOLOVATY; D. GÓMEZ; M. LOBO; E. PÉREZ ON VIBRATING MEMBRANES WITH VERY HEAVY THIN INCLUSIONS, Mathematical Models and Methods in Applied Sciences, Volume 14 (2004) no. 07, p. 987 | DOI:10.1142/s0218202504003520

Cité par 49 documents. Sources : Crossref, zbMATH

Commentaires - Politique