[Sur les problèmes locaux pour les systèmes vibratoires avec des masses concentrées]
Ce rapport-ci contient quelques resultats obtenus tout au long des denières décades sur les systèmes vibratoires avec masses concentrées. Notamment, on met en evidence la connexion entre les éléments propres du problème local et les vibrations de basses fréquences et d'hautes fréquences du problème original.
In this review we collect certain results obtained in the last decades on vibrating systems with concentrated masses. In particular, we show the connection of the eigenvalues and eigenfunctions of the local problem with the low and high frequency vibrations of the original problem.
Accepté le :
Publié le :
Mot clés : Vibrations, Analyse spectrale, Masses concentrées, Fréquences basses, Fréquences hautes
Miguel Lobo 1 ; Eugenia Pérez 2
@article{CRMECA_2003__331_4_303_0, author = {Miguel Lobo and Eugenia P\'erez}, title = {Local problems for vibrating systems with concentrated masses: a~review}, journal = {Comptes Rendus. M\'ecanique}, pages = {303--317}, publisher = {Elsevier}, volume = {331}, number = {4}, year = {2003}, doi = {10.1016/S1631-0721(03)00058-5}, language = {en}, }
Miguel Lobo; Eugenia Pérez. Local problems for vibrating systems with concentrated masses: a review. Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 303-317. doi : 10.1016/S1631-0721(03)00058-5. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00058-5/
[1] Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Trend in Applications of Pure Mathematics to Mechanics, Lecture Notes in Phys., 195, Springer-Verlag, Berlin, 1984, pp. 346-368
[2] Vibration de systèmes élastiques avec des masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino, Volume 42 (1984) no. 3, pp. 43-63
[3] Homogenization problems in elasticity. Spectra of singularly perturbed operators (R.J. Knops; A.A. Lacey, eds.), Non-Classical Continuum Mechanics, Cambridge University Press, New York, 1987, pp. 81-95
[4] Eigenoscillations of a string with an additional mass, Siberian Math. J., Volume 29 (1988) no. 5, pp. 744-760
[5] Perturbation of the eigenvalues of a membrane with a concentrated mass, Quart. Appl. Math., Volume XLVII (1989) no. 1, pp. 93-103
[6] Perturbation des valeurs propres pour des systèmes avec masse concentrée, C. R. Acad. Sci. Paris, Sér. II, Volume 309 (1989), pp. 507-510
[7] Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Heidelberg, 1989
[8] On vibrations of a membrane with concentrated masses, Bull. Sci. Math. Sér. 2, Volume 115 (1991), pp. 1-27
[9] Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992
[10] Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions, Math. Model Numer. Anal., Volume 27 (1993) no. 6, pp. 777-799
[11] Spectral properties of oscillatory systems with adjoined masses, Trans. Moscow Math. Soc., Volume 54 (1993), pp. 23-59
[12] On vibrations of a body with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 2, pp. 249-273
[13] Vibrations of a body with many concentrated masses near the boundary: High frequency vibrations (E. Sanchez-Palencia, ed.), Spectral Analysis of Complex Structures, Hermann, Paris, 1995, pp. 85-101
[14] Vibrations of a membrane with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 5 (1995) no. 5, pp. 565-585
[15] On the local vibrations for systems with many concentrated masses, C. R. Acad. Sci. Paris, Sér. IIb, Volume 324 (1997), pp. 323-329
[16] On the eigenfunctions associated with the high frequencies in systems with a concentrated mass, J. Math. Pures Appl., Volume 78 (1999), pp. 841-865
[17] The skin effect in vibrating systems with many concentrated masses, Math. Methods Appl. Sci., Volume 24 (2001), pp. 59-80
[18] On the whispering gallery modes on the interfaces of membranescomposed of two materials with very different densities, Math. Models Methods Appl. Sci., Volume 13 (2003) no. 1, pp. 75-98
[19] On eigenvibrations of a body with light concentrated masses on the surface, Russian Math. Surveys, Volume 57 (2002) no. 6, pp. 195-196
[20] On the vibrations of a plate with a concentrated mass and very small thickness, Math. Methods Appl. Sci., Volume 26 (2003), pp. 27-65
[21] E. Pérez, Vibrating systems with concentrated masses: on the local problem and the low frequencies, in: C. Constanda, A. Larguillier, M. Ahues (Eds.), Proceedings of the 7th International Conference on Integral Methods in Sciences and Engineering, Birkhäuser, 2003, to appear
[22] Asymptotics for the eigenelements of vibrating membranes with very heavy thing inclusions, C. R. Mécanique, Volume 330 (2002) no. 11, pp. 777-782
[23] Vibrations of a thick periodic junction with concentrated masses, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 6, pp. 1001-1027
[24] High frequency vibrations in a stiff problem, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 2, pp. 291-311
[25] Asymptotic behavior of an elastic body with a surface having small stuck regions, RAIRO Modél. Math. Anal. Numér., Volume 22 (1988) no. 4, pp. 609-624
[26] Homogénéisation de frontieres par epi-convergence en élasticité linéaire, RAIRO Modél. Math. Anal. Numér., Volume 24 (1990) no. 1, pp. 5-26
[27] Boundary homogenization of certain elliptic problems for cylindrical bodies, Bull. Sci. Math. Sér. IIb, Volume 116 (1992), pp. 399-426
[28] Un terme étrange venu d'ailleurs (H. Brezis; J.-L. Lions, eds.), Collège de France Séminar, Vol. II & III, Res. Notes Math., 60 & 70, Pitman, London, 1982, pp. 98-138 (154–178)
[29] On homogenization of solutions of boundary value problems in domains, perforated along manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 25 (1998), pp. 611-629
[30] Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966
[31] Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980
[32] On spectral pollution in the finite element approximation of thin elastic “membrane” shells, Numer. Math., Volume 75 (1997) no. 4, pp. 473-500
[33] M. Lobo, S.A. Nazarov, E. Pérez, Eigenoscillations of contrastly non-homogeneous elastic body. Asymptotic and uniform estimates for the eigenvalues, in preparation
[34] Convergence for Functions and Operators, Pitman, London, 1984
[35] Regular degeneration and boundary layer for linear differential equations with small parameter, Trans. Amer. Math. Soc. Ser. 2, Volume 20 (1957), pp. 239-364
[36] Modes and quasimodes, Funct. Anal. Appl., Volume 6 (1972) no. 2, pp. 94-101
[37] Semiclassical asymptotics of eigenfunctions (M.V. Fedoryuk, ed.), Partial Differential Equations V, Springer-Verlag, Heidelberg, 1999, pp. 133-171
[38] Les distributions, Tome III, Dunod, Paris, 1965
[39] Asymptotic Theory of Thin Plates and Rods, Vol. 1. Dimension Reduction and Integral Estimates, Novosibirsk, Nauchnaya Kniga, 2002
[40] Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987
[41] Distributions and the Boundary Values of Analytic Functions, Academic Press, New York, 1966
Cité par Sources :
Commentaires - Politique