[Existence d'une dérive directionnelle de Stokes dans les vagues de gravité tri-dimensionnelles asymétriques]
We consider periodic travelling gravity waves at the surface of an infinitely deep perfect fluid. The pattern is non-symmetric with respect to the propagation direction of the waves and we consider a general non-resonant situation. Defining a couple of amplitudes
On considère les vagues périodiques à la surface d'une couche de fluide parfait, de profondeur infinie, soumise à la seule gravité. Le réseau bidimensionnel des périodes est pris non symétrique par rapport à la direction de propagation et on suppose ne pas être dans un cas résonant. On définit le couple d'amplitudes
Accepté le :
Publié le :
Mots-clés : Ondes, Écoulements potentiels de fluides parfaits, Vagues non linéaires, Ondes progressives de gravité, Théorie des bifurcations, Vagues tri-dimensionnelles asymétriques
Gérard Iooss 1 ; Pavel Plotnikov 2
@article{CRMECA_2009__337_9-10_633_0, author = {G\'erard Iooss and Pavel Plotnikov}, title = {Existence of a directional {Stokes} drift in asymmetrical three-dimensional travelling gravity waves}, journal = {Comptes Rendus. M\'ecanique}, pages = {633--638}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.001}, language = {en}, }
TY - JOUR AU - Gérard Iooss AU - Pavel Plotnikov TI - Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves JO - Comptes Rendus. Mécanique PY - 2009 SP - 633 EP - 638 VL - 337 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2009.09.001 LA - en ID - CRMECA_2009__337_9-10_633_0 ER -
Gérard Iooss; Pavel Plotnikov. Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 633-638. doi : 10.1016/j.crme.2009.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.001/
[1] On the theory of oscillatory waves, Trans. Cambridge Phil. Soc., Volume 8 (1847), pp. 441-455
[2] Nonlinear gravity capillary-gravity waves, Annu. Rev. Fluid Mech., Volume 31 (1999), pp. 301-346
[3] Three-dimensional nonlinear wave interaction in water of constant depth, Nonlinear Anal. T.M.A., Volume 5 (1981) no. 3, pp. 303-323
[4] Traveling gravity water waves in two three dimensions, EJMB/Fluids, Volume 21 (2002), pp. 615-641
[5] Travelling two three-dimensional capillary gravity water waves, SIAM J. Math. Anal., Volume 32 (2000), pp. 323-359
[6] A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. Roy. Soc. Edinburgh A, Volume 131 (2001), pp. 83-136
[7] A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., Volume 13 (2003), pp. 397-447
[8] Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Amer. Math. Soc., Volume 200 (2009), p. 940
[9] G. Iooss, P. Plotnikov, Asymmetrical three-dimensional travelling gravity waves, Preprint, 2009
[10] Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654
[11] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478
Cité par Sources :
Commentaires - Politique