[Existence d'une dérive directionnelle de Stokes dans les vagues de gravité tri-dimensionnelles asymétriques]
On considère les vagues périodiques à la surface d'une couche de fluide parfait, de profondeur infinie, soumise à la seule gravité. Le réseau bidimensionnel des périodes est pris non symétrique par rapport à la direction de propagation et on suppose ne pas être dans un cas résonant. On définit le couple d'amplitudes
We consider periodic travelling gravity waves at the surface of an infinitely deep perfect fluid. The pattern is non-symmetric with respect to the propagation direction of the waves and we consider a general non-resonant situation. Defining a couple of amplitudes
Accepté le :
Publié le :
Mots-clés : Ondes, Écoulements potentiels de fluides parfaits, Vagues non linéaires, Ondes progressives de gravité, Théorie des bifurcations, Vagues tri-dimensionnelles asymétriques
Gérard Iooss 1 ; Pavel Plotnikov 2
@article{CRMECA_2009__337_9-10_633_0, author = {G\'erard Iooss and Pavel Plotnikov}, title = {Existence of a directional {Stokes} drift in asymmetrical three-dimensional travelling gravity waves}, journal = {Comptes Rendus. M\'ecanique}, pages = {633--638}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.001}, language = {en}, }
TY - JOUR AU - Gérard Iooss AU - Pavel Plotnikov TI - Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves JO - Comptes Rendus. Mécanique PY - 2009 SP - 633 EP - 638 VL - 337 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2009.09.001 LA - en ID - CRMECA_2009__337_9-10_633_0 ER -
Gérard Iooss; Pavel Plotnikov. Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 633-638. doi : 10.1016/j.crme.2009.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.001/
[1] On the theory of oscillatory waves, Trans. Cambridge Phil. Soc., Volume 8 (1847), pp. 441-455
[2] Nonlinear gravity capillary-gravity waves, Annu. Rev. Fluid Mech., Volume 31 (1999), pp. 301-346
[3] Three-dimensional nonlinear wave interaction in water of constant depth, Nonlinear Anal. T.M.A., Volume 5 (1981) no. 3, pp. 303-323
[4] Traveling gravity water waves in two three dimensions, EJMB/Fluids, Volume 21 (2002), pp. 615-641
[5] Travelling two three-dimensional capillary gravity water waves, SIAM J. Math. Anal., Volume 32 (2000), pp. 323-359
[6] A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. Roy. Soc. Edinburgh A, Volume 131 (2001), pp. 83-136
[7] A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., Volume 13 (2003), pp. 397-447
[8] Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Amer. Math. Soc., Volume 200 (2009), p. 940
[9] G. Iooss, P. Plotnikov, Asymmetrical three-dimensional travelling gravity waves, Preprint, 2009
[10] Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654
[11] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478
Cité par Sources :
Commentaires - Politique