We study the solutions to quasilinear elliptic equations with high contrast coefficients. The energy formulation leads to work with variable exponent Lebesgue spaces in domains with a complex microstructure scaled by a small parameter ε. We derive rigorously the corresponding homogenized problem. It is completely described in terms of local energy characteristics of the original domain.
Nous étudions les solutions d'équations quasilinéaires elliptiques à coefficients fortement contrastés. La formulation variationnelle associée conduit à travailler dans des espaces de Lebesgue à exposant variable dans des domaines à la microstructure complexe caractérisée par un petit paramètre ε. Nous obtenons rigoureusement le problème homogénéisé correspondant. Il est déterminé par les caractéristiques variationnelles locales de la microstructure.
Accepted:
Published online:
Mot clés : Mécanique des fluides, Homogénéisation, Double porosité, Croissance non standard
Catherine Choquet 1; Leonid Pankratov 2
@article{CRMECA_2009__337_9-10_659_0, author = {Catherine Choquet and Leonid Pankratov}, title = {Nonlinear double porosity models with non-standard growth}, journal = {Comptes Rendus. M\'ecanique}, pages = {659--666}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.004}, language = {en}, }
Catherine Choquet; Leonid Pankratov. Nonlinear double porosity models with non-standard growth. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 659-666. doi : 10.1016/j.crme.2009.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.004/
[1] Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000
[2] Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259
[3] Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., Volume 66 (2006) no. 4, pp. 1383-1406
[4] Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, Prikl. Mat. Mech., Volume 24 (1960) no. 5, pp. 1286-1303
[5] Homogenization and Porous Media, Interdisciplinary Applied Mathematics, vol. 6, Springer, 1997
[6] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Appl. Math. Anal., Volume 21 (1990), pp. 823-836
[7] Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media, Proc. Roy. Soc. Edinburgh Sect. A, Volume 136 (2006), pp. 1131-1155
[8] Derivation of the double porosity model of a compressible miscible displacement in naturally fractured reservoirs, Appl. Anal., Volume 83 (2004), pp. 477-500
[9] A general double porosity model, C. R. Math. Acad. Sci. Paris Ser. IIb, Volume 327 (1999), pp. 1245-1250
[10] On the double porosity model of a single phase flow in random media, Asympt. Anal., Volume 327 (2003), pp. 311-332
[11] Homogenization of Partial Differential Equations, Birkhäuser, Boston, 2006
[12] Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Handbook of Differential Equations, vol. 3, Stationary Partial Differential Equations, Elsevier, 2006 (Chapter 1, pp. 1–100)
[13] An extension theorem from connected sets, and homogenization in general periodic domains, J. Nonlinear Anal., Volume 18 (1992), pp. 481-496
[14] Regularity for a more general class of quasi-linear elliptic equations, J. Diff. Equations, Volume 51 (1984), pp. 126-150
Cited by Sources:
Comments - Policy