[Interaction entre les vibrations d'une poutre et un champ de forces aléatoires]
La mesure de la complexité des systèmes physiques intervient dans de nombreuses applications des sciences de l'ingénieur. Lin [Entropy 10 (1) (2008) 1–5] a montré que la complexité structurelle d'un système est liée aux propriétés ayant trait à ses symétries géométriques ainsi qu'à sa stabilité dans le temps. Le modèle de Ratsaby [Entropy 10 (1) (2008) 6–14] suggère d'évaluer la complexité des systèmes physiques par analogie à la mesure de la complexité des algorithmes. Selon ce modèle, un système physique sollicité par un environnement chaotique réagit comme une entité qui absorbe une partie du caractère aléatoire des sollicitations qui s'exercent sur celui-ci. Cette Note a pour objet de présenter la réponse d'un système vibratoire simple soumis à un champ de forces aléatoires. On montrera principalement que la relation obtenue entre la complexité du système et le caractère aléatoire du champ de déplacements qui en résulte, est analogue à celle qui prévaut pour les règles de sélection des algorithmes informatiques.
Measuring the complexity of physical systems has been traditionally a problem in numerous engineering applications. Lin [Entropy 10 (1) (2008) 1–5] showed that the structural complexity is related to other properties of a solid such as symmetry and its stability over time. In Ratsaby [Entropy 10 (1) (2008) 6–14] a model was introduced which defines the complexity of a solid structure not by a qualitative notion of entropy but by an algorithmic notion of description complexity. According to the model, a dynamic structure in a random surrounding acts as an interfering entity that deforms randomness. In the current Note we report on the results of an empirical study that analyzes the output response of a simulated elastic beam subjected to a field of external random forces input. The relationship between the complexity of the system and the stochasticity of the output is shown to support this model and is a first indication that solids act similar to algorithmic selection rules.
Accepté le :
Publié le :
Mot clés : Informatique, Complexité structurelle, Solides, Caractère aléatoire
Joël Chaskalovic 1, 2 ; J. Ratsaby 3
@article{CRMECA_2010__338_1_33_0, author = {Jo\"el Chaskalovic and J. Ratsaby}, title = {Interaction of a self vibrating beam with chaotic external forces}, journal = {Comptes Rendus. M\'ecanique}, pages = {33--39}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2010}, doi = {10.1016/j.crme.2009.11.001}, language = {en}, }
Joël Chaskalovic; J. Ratsaby. Interaction of a self vibrating beam with chaotic external forces. Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 33-39. doi : 10.1016/j.crme.2009.11.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.11.001/
[1] Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci., Volume 88 (1991), pp. 2297-2301
[2] The nature of the chemical process. 1. Symmetry evolution – revised information theory, similarity principle and ugly symmetry, International Journal of Molecular Sciences, Volume 2 (2001), pp. 10-39
[3] Gibbs paradox and the concepts of information, symmetry, similarity and their relationship, Entropy, Volume 10 (2008), pp. 1-5
[4] An algorithmic complexity interpretation of Lin's third law of information theory, Entropy, Volume 10 (2008) no. 1, pp. 6-14
[5] Algorithmic complexity and randomness in elastic solids (Technical Report No.) | arXiv
[6] Three approaches to the quantitative definition of information, Problems of Information Transmission, Volume 1 (1965), pp. 1-17
[7] On the symmetry of algorithmic information, Soviet Mathematics Doklady, Volume 15 (1974), pp. 1477-1480
[8] The definition of random sequences, Information and Control, Volume 9 (1966), pp. 602-619
[9] On tables of random numbers, Theoretical Computer Science, Volume 207 (1998) no. 2, pp. 387-395
[10] A unified approach to the definition of random sequences, Mathematical Systems Theory, Volume 5 (1971), pp. 246-258
[11] On tables of random numbers, Sankhyaa, The Indian Journal of Statistics A, Volume 25 (1963), pp. 369-376
[12] Some properties of Kolmogorov δ random finite sequences, SIAM Theory of Probability and its Applications, Volume 32 (1987), pp. 507-508
[13] Kolmogorov–Loveland stochasticity for finite strings, Information Processing Letters, Volume 91 (2004) no. 6, pp. 263-269
[14] Clustering by compression, IEEE Transactions on Information Theory, Volume 51 (2005) no. 4, pp. 1523-1545
[15] A universal algorithm for sequential data compression, IEEE Transactions on Information Theory, Volume 23 (1977) no. 3, pp. 337-343
Cité par Sources :
Commentaires - Politique