Comptes Rendus
Temporal ordering of nonequilibrium fluctuations as a corollary of the second law of thermodynamics
[Ordonnancement temporel des fluctuations de non-équilibre comme corollaire de la seconde loi de la thermodynamique]
Comptes Rendus. Physique, Work, dissipation, and fluctuations in nonequilibrium physics, Volume 8 (2007) no. 5-6, pp. 598-608.

Dans les états stationnaires de non-équilibre, les probabilités des chemins renversés dans le temps diffèrent en général des probabilités des chemins et elles décroissent à des taux donnés par les entropies par unité de temps, respectivement réverse et standard. Ces quantités caractérisent le désordre temporel des chemins renversés dans le temps et des chemins eux-mêmes. La différence entre ces quantités donne la production d'entropie thermodynamique en unités de la constante de Boltzmann. Hors d'équilibre, il ressort que le désordre temporel des chemins renversés dans le temps est plus grand que le désordre temporel des chemins eux-mêmes. Ainsi, un théorème est obtenu selon lequel l'ordre temporel des chemins est plus grand que pour les chemins renversés dans le temps. Le désordre temporel ou hasard dynamique des chemins et des chemins réverses ont des propriétés de grandes déviations directement reliées à la production d'entropie thermodynamique.

In nonequilibrium steady states, the probabilities of the time-reversed paths differ in general from the path probabilities and they decrease at different rates given, respectively, by the time-reversed and standard entropies per unit time. These quantities characterize temporal disorder in the time-reversed paths and the paths themselves. The difference between these quantities gives the thermodynamic entropy production in units of Boltzmann's constant. Out of equilibrium, the temporal disorder of the time-reversed paths turns out to be larger than the temporal disorder of the paths themselves. In this way, a theorem is obtained according to which the temporal order of the paths is greater than for the time-reversed paths. The temporal disorder or dynamical randomness of the paths and their time-reversal have large-deviation properties directly connected to the thermodynamic entropy production.

Reçu le :
Publié le :
DOI : 10.1016/j.crhy.2007.05.002
Keywords: Thermodynamic entropy production, Dynamical randomness, Entropy per unit time, Time reversal
Mots-clés : Production d'entropie thermodynamique, Hasard dynamique, Entropie par unité de temps, Renversement du temps

Pierre Gaspard 1

1 Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, code postal 231, campus Plaine, B-1050 Brussels, Belgium
@article{CRPHYS_2007__8_5-6_598_0,
     author = {Pierre Gaspard},
     title = {Temporal ordering of nonequilibrium fluctuations as a corollary of the second law of thermodynamics},
     journal = {Comptes Rendus. Physique},
     pages = {598--608},
     publisher = {Elsevier},
     volume = {8},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crhy.2007.05.002},
     language = {en},
}
TY  - JOUR
AU  - Pierre Gaspard
TI  - Temporal ordering of nonequilibrium fluctuations as a corollary of the second law of thermodynamics
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 598
EP  - 608
VL  - 8
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.05.002
LA  - en
ID  - CRPHYS_2007__8_5-6_598_0
ER  - 
%0 Journal Article
%A Pierre Gaspard
%T Temporal ordering of nonequilibrium fluctuations as a corollary of the second law of thermodynamics
%J Comptes Rendus. Physique
%D 2007
%P 598-608
%V 8
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2007.05.002
%G en
%F CRPHYS_2007__8_5-6_598_0
Pierre Gaspard. Temporal ordering of nonequilibrium fluctuations as a corollary of the second law of thermodynamics. Comptes Rendus. Physique, Work, dissipation, and fluctuations in nonequilibrium physics, Volume 8 (2007) no. 5-6, pp. 598-608. doi : 10.1016/j.crhy.2007.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.05.002/

[1] D.A. McQuarrie; J.D. Simon Physical Chemistry: A Molecular Approach, University Science Books, Sausalito, 1997

[2] G. Nicolis; I. Prigogine Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977

[3] A.N. Kolmogorov Dokl. Akad. Nauk SSSR, 124 (1959), p. 754

[4] Ya.G. Sinai Dokl. Akad. Nauk SSSR, 124 (1959), p. 768

[5] J.-P. Eckmann; D. Ruelle Rev. Mod. Phys., 57 (1985), p. 617

[6] P. Gaspard Chaos, Scattering, and Statistical Mechanics, Cambridge University Press, Cambridge, UK, 1998

[7] H. van Beijeren; J.R. Dorfman; H.A. Posch; Ch. Dellago Phys. Rev. E, 56 (1997), p. 5272

[8] P. Gaspard; H. van Beijeren J. Stat. Phys., 109 (2002), p. 671

[9] C. Shannon Bell System Tech. J., 27 (1948), p. 379 (623)

[10] P. Gaspard; X.J. Wang Phys. Rep., 235 (1993), p. 321

[11] P. Gaspard; M.E. Briggs; M.K. Francis; J.V. Sengers; R.W. Gammon; J.R. Dorfman; R.V. Calabrese Nature, 394 (1998), p. 865

[12] P. Gaspard J. Stat. Phys., 117 (2004), p. 599

[13] Ya.B. Pesin Russian Math. Surveys, 32 (1977), p. 55

[14] D. Andrieux; P. Gaspard; S. Ciliberto; N. Garnier; S. Joubaud; A. Petrosyan Phys. Rev. Lett., 98 (2007), p. 150601

[15] I.P. Cornfeld; S.V. Fomin; Ya.G. Sinai Ergodic Theory, Springer, Berlin, 1982

[16] G. Nicolis; C. Nicolis Phys. Rev. A, 38 (1988), p. 427

[17] P. Gaspard New J. Phys., 7 (2005), p. 77

[18] J. Schnakenberg Rev. Mod. Phys., 48 (1976), p. 571

[19] Luo Jiu-li; C. Van den Broeck; G. Nicolis Z. Phys. B—Condens. Matter, 56 (1984), p. 165

[20] P. Gaspard, Adv. Chem. Phys. (2007), in press

[21] V. Lecomte; C. Appert-Rolland; F. van Wijland Phys. Rev. Lett., 95 (2005), p. 010601

[22] C. Jarzynski Phys. Rev. E, 73 (2006), p. 046105

[23] J. Naudts; E. Van der Straeten Phys. Rev. E, 74 (2006), p. 040103R

[24] R. Kawai; J.M.R. Parrondo; C. Van den Broeck Phys. Rev. Lett., 98 (2007), p. 080602

[25] R. Landauer IBM J. Res. Dev., 5 (1961), p. 183

[26] C.H. Bennett Int. J. Theor. Phys., 21 (1982), p. 905

[27] J.L. Lebowitz; H. Spohn J. Stat. Phys., 95 (1999), p. 333

[28] D.J. Evans; E.G.D. Cohen; G.P. Morriss Phys. Rev. Lett., 71 (1993), p. 2401

[29] D.J. Evans; D.J. Searles Phys. Rev. E, 50 (1994), p. 1645

[30] G. Gallavotti; E.G.D. Cohen Phys. Rev. Lett., 74 (1995), p. 2694

[31] J. Kurchan J. Phys. A: Math. Gen., 31 (1998), p. 3719

[32] G.E. Crooks Phys. Rev. E, 60 (1999), p. 2721

[33] C. Maes J. Stat. Phys., 95 (1999), p. 367

[34] G.M. Wang; E.M. Sevick; E. Mittag; D.J. Searles; D.J. Evans Phys. Rev. Lett., 89 (2002), p. 050601

[35] R. van Zon; E.G.D. Cohen Phys. Rev. Lett., 91 (2003), p. 110601

[36] R. van Zon; S. Ciliberto; E.G.D. Cohen Phys. Rev. Lett., 92 (2004), p. 130601

[37] N. Garnier; S. Ciliberto Phys. Rev. E, 71 (2005), p. R060101

[38] P. Gaspard J. Chem. Phys., 120 (2004), p. 8898

[39] D. Andrieux; P. Gaspard J. Chem. Phys., 121 (2004), p. 6167

[40] U. Seifert Europhys. Lett., 70 (2005), p. 36

[41] B. Cleuren; C. Van den Broeck; R. Kawai Phys. Rev. Lett., 96 (2006), p. 050601

[42] P. Grassberger; I. Procaccia Phys. Rev. A, 28 (1983), p. 2591

[43] J.-P. Eckmann; I. Procaccia Phys. Rev. A, 34 (1986), p. 659

[44] I.A. Ibragimov Theor. Probab. Appl., 7 (1962), p. 349

  • Moupriya Das; Anthony B. Costa; Jason R. Green Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids, Physical Review E, Volume 95 (2017) no. 2 | DOI:10.1103/physreve.95.022102
  • Pierre Gaspard Random paths and current fluctuations in nonequilibrium statistical mechanics, Journal of Mathematical Physics, Volume 55 (2014) no. 7 | DOI:10.1063/1.4881534
  • Luciana Renata de Oliveira; Armando Bazzani; Enrico Giampieri; Gastone C. Castellani The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation, The Journal of Chemical Physics, Volume 141 (2014) no. 6 | DOI:10.1063/1.4891515
  • Pierre Gaspard Multivariate fluctuation relations for currents, New Journal of Physics, Volume 15 (2013) no. 11, p. 115014 | DOI:10.1088/1367-2630/15/11/115014
  • Pierre Gaspard Time‐Reversal Symmetry Relations for Currents in Quantum and Stochastic Nonequilibrium Systems, Nonequilibrium Statistical Physics of Small Systems (2013), p. 213 | DOI:10.1002/9783527658701.ch7
  • Pierre Gaspard Fluctuation relations for equilibrium states with broken discrete symmetries, Journal of Statistical Mechanics: Theory and Experiment, Volume 2012 (2012) no. 08, p. P08021 | DOI:10.1088/1742-5468/2012/08/p08021
  • Jose Alvarez-Ramirez; Eduardo Rodriguez; Esteban Martina; Carlos Ibarra-Valdez Cyclical behavior of crude oil markets and economic recessions in the period 1986–2010, Technological Forecasting and Social Change, Volume 79 (2012) no. 1, p. 47 | DOI:10.1016/j.techfore.2011.04.010
  • References, Physics of Self‐Organization and Evolution (2011), p. 453 | DOI:10.1002/9783527636792.refs
  • Pierre Gaspard Fluctuation Theorem, Nonequilibrium Work, and Molecular Machines, From Non‐Covalent Assemblies to Molecular Machines (2010), p. 307 | DOI:10.1002/9783527632817.ch21
  • Pierre Gaspard Nonequilibrium Nanosystems, Nonlinear Dynamics of Nanosystems (2010), p. 1 | DOI:10.1002/9783527629374.ch1
  • David Andrieux; Pierre Gaspard Molecular information processing in nonequilibrium copolymerizations, The Journal of Chemical Physics, Volume 130 (2009) no. 1 | DOI:10.1063/1.3050099
  • D. Andrieux; P. Gaspard Dynamical randomness, information, and Landauer's principle, EPL (Europhysics Letters), Volume 81 (2008) no. 2, p. 28004 | DOI:10.1209/0295-5075/81/28004
  • David Andrieux; Pierre Gaspard Temporal disorder and fluctuation theorem in chemical reactions, Physical Review E, Volume 77 (2008) no. 3 | DOI:10.1103/physreve.77.031137
  • David Andrieux; Pierre Gaspard Nonequilibrium generation of information in copolymerization processes, Proceedings of the National Academy of Sciences, Volume 105 (2008) no. 28, p. 9516 | DOI:10.1073/pnas.0802049105

Cité par 14 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: