[Couplages oxydation–mécanique dans les résines de type époxy soumises à un environnement dit « haute température »]
Le présent article s'intéresse à la modélisation des couplages entre l'oxydation et la mécanique dans les résines de type époxy soumises à un environnement dit « haute température » (150 °C). Le couplage entre le schéma mécanistique de réaction diffusion de l'oxygène et la mécanique est abordé théoriquement en utilisant une approche classique de la thermodynamique des processus irréversibles. Il est montré que le phénomène de diffusion–réaction peut être influencé par le tenseur des déformations mais aussi par le gradient spatial de la trace des déformations.
The present article focuses on the modelling of chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments at high temperatures (150 °C). The coupling between oxygen reaction–diffusion and mechanics is put in evidence theoretically through the employment of a unified approach, based on the thermodynamics of irreversible processes; it is found that oxygen reaction–diffusion in the polymer matrix can be influenced by the strain tensor, in particular by its trace and by its spatial gradients.
Accepté le :
Publié le :
Mots-clés : Milieux continus, Thermo oxydation, Couplage diffusion mécanique, Thermodynamique des processus irréversibles
Marco Gigliotti 1 ; Jean-Claude Grandidier 1
@article{CRMECA_2010__338_3_164_0, author = {Marco Gigliotti and Jean-Claude Grandidier}, title = {Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments}, journal = {Comptes Rendus. M\'ecanique}, pages = {164--175}, publisher = {Elsevier}, volume = {338}, number = {3}, year = {2010}, doi = {10.1016/j.crme.2010.02.008}, language = {en}, }
TY - JOUR AU - Marco Gigliotti AU - Jean-Claude Grandidier TI - Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments JO - Comptes Rendus. Mécanique PY - 2010 SP - 164 EP - 175 VL - 338 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2010.02.008 LA - en ID - CRMECA_2010__338_3_164_0 ER -
Marco Gigliotti; Jean-Claude Grandidier. Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments. Comptes Rendus. Mécanique, Volume 338 (2010) no. 3, pp. 164-175. doi : 10.1016/j.crme.2010.02.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.02.008/
[1] Damage mechanisms induced by cyclic ply-stresses in carbon-epoxy laminates: Environmental effects, International Journal of Fatigue, Volume 28 (2006), pp. 1202-1216
[2] A new method for predicting the thermal oxidation of thermoset matrices. Application to an amine crosslinked epoxy, Polymer Testing, Volume 20 (2001), pp. 795-803
[3] Strategy for studying thermal oxidation of organic matrix composites, Composites Science and Technology, Volume 65 (2005), pp. 411-419
[4] Oxidation induced shrinkage for thermally aged epoxy networks, Polymer Degradation and Stability, Volume 81 (2003), pp. 239-248
[5] Mechanism-based modeling of long term degradation (K. Reifsnider; D.A. Dillard; A.H. Cardon, eds.), Proceedings of the Third International Conference on Progress in Durability Analysis of Composite Systems, DURACOSYS 97, Blacksburg, USA, Balkema, 1998
[6] A coupled analysis of mechanical behaviour and ageing for polymer-matrix composites, Composites Science and Technology, Volume 62 (2002), pp. 543-549
[7] Modeling of oxidative development in PMR-15 resin, Polymer Degradation and Stability, Volume 91 (2006), pp. 1861-1869
[8] Preliminary evaluation of the use of elevated pressure to accelerate thermo-oxydative aging in composites, Polymer Degradation and Stability, Volume 64 (1999), pp. 207-212
[9] L. Olivier, Prévision du vieillissement thermo-oxydant de composites à matrice organique dediés à l'aéronautique: Prise en compte des couplages multiphysiques, PhD thesis, University of Poitiers, October 2008
[10] Characterisation by ultra-micro indentation of an oxidized epoxy polymer: Correlation with the predictions of a kinetic model of oxidation, Polymer Degradation and Stability, Volume 93 (2008), pp. 489-497
[11] L. Olivier, N.Q. Ho, J.C. Grandidier, M.C. Lafarie-Frenot, Oxidation of a carbon/epoxy composite: Numerical simulation of induced stresses, in: Journées Nationales des Composites JNC15, Marseille, Septembre 2007
[12] Development of experimental, theoretical and numerical tools for studying thermo-oxidation of CFRP composites, Composites, Part A: Applied Science and Manufacturing, Volume 40 (2009), pp. 1008-1016
[13] M. Gigliotti, L. Olivier, D.Q. Vu, J.C. Grandidier, M.C. Lafarie-Frenot, Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures, 2009
[14] A linear theory of thermochemical equilibrium of solids under stress, Acta Metallurgica, Volume 21 (1973), pp. 1051-1063
[15] A nonlinear theory of thermochemical equilibrium of solids under stress, Acta Metallurgica, Volume 26 (1978), pp. 53-60
[16] On the equilibrium of heterogeneous substances, The Scientific Papers of W.J. Gibbs, vol. 1, Dover, 1906, pp. 55-349
[17] Rational Thermodynamics, Springer, New York, 1984
[18] Continuum thermodynamics and transport properties for polymer–fluid mixtures, Chemical Engineering Science, Volume 47 (1992), pp. 3037-3057
[19] Stress assisted diffusion in elastic and viscoelastic materials, Journal of the Mechanics and Physics of Solids, Volume 35 (1987), pp. 73-93
[20] Coupled deformation and mass-transport processes in solid polymers, Ind. Eng. Chem. Res., Volume 29 (1990), pp. 1194-1204
[21] An approach to the coupled behaviour of polymers subjected to a thermo-mechanical loading in a gaseous environment, European Journal of Mechanics A/Solids, Volume 24 (2005), pp. 151-168
[22] A modelling of the direct couplings between heat transfer, mass transport, chemical reactions and mechanical behaviour. Numerical implementation to explosive decompression, Composites, Part A: Applied Science and Manufacturing, Volume 37 (2006), pp. 571-584
[23] Modelling of coupling between mechanics and water diffusion in bonded assemblies, Oïl & Gas Science and Technology, Volume 61 (2006), pp. 759-764
[24] Thermodynamics of Irreversible Processes, Interscience, New York, 1951
[25] Thermodynamique, Editions Odile Jacobs, 1999
[26] A FEM coupling model for properties prediction during the curing of an epoxy matrix, Computational Materials Science, Volume 45 (2009), pp. 715-724
[27] Determination of thermal oxidation rate constants by an inverse method: Application to polyethylene, Polymer Degradation and Stability, Volume 86 (2004), pp. 309-321
[28] Thermosetting Polymers, Marcel Dekker, 2002
[29] Continuum thermodynamics, Journal of Applied Mechanics, Volume 50 (1983), pp. 1010-1020
[30] On Onsager's principle of microscopic reversibility, Reviews of Modern Physics, Volume 17 (1945), pp. 343-350
[31] The Thermomechanics of Nonlinear Irreversible Behaviors, World Scientific, 1999
[32] Theory of Sound, Dover, New York, 1945
[33] Understanding Non-Equilibrium Thermodynamics, Springer-Verlag, Berlin, 2008
[34] On the effect of stress on oxidative destruction of polymers. The action of ozone on polyolefines, European Polymer Journal, Volume 17 (1981), pp. 169-173
[35] Oxidative destruction of polymers under mechanical load, European Polymer Journal, Volume 18 (1982), pp. 413-420
- 3D analytical solution to a thermo-chemo-elastic contact problem with multi-species diffusion, Journal of Thermal Stresses (2025), p. 1 | DOI:10.1080/01495739.2025.2466086
- Mitochondria and MICOS – function and modeling, Reviews in the Neurosciences, Volume 35 (2024) no. 5, p. 503 | DOI:10.1515/revneuro-2024-0004
- Modeling and simulation of mechanical-thermal-diffusional-reactional interactions in ceramic oxidation process, Ceramics International, Volume 48 (2022) no. 18, p. 26072 | DOI:10.1016/j.ceramint.2022.05.291
- A coupled theory for soft materials at finite strain with heat conduction, diffusion and chemical reactions, Computational Materials Science, Volume 188 (2021), p. 110189 | DOI:10.1016/j.commatsci.2020.110189
- A theoretical model for thermo-chemo-mechanically coupled problems considering plastic flow at large deformation and its application to metal oxidation, International Journal of Solids and Structures, Volume 212 (2021), p. 107 | DOI:10.1016/j.ijsolstr.2020.12.006
- Hygrothermoelastic Stress in Organic Matrix Composite Materials, Encyclopedia of Continuum Mechanics (2020), p. 1248 | DOI:10.1007/978-3-662-55771-6_94
- A multi-physics constitutive model to predict hydrolytic aging in quasi-static behaviour of thin cross-linked polymers, International Journal of Plasticity, Volume 130 (2020), p. 102676 | DOI:10.1016/j.ijplas.2020.102676
- Thermodynamics of Irreversible Processes with Internal Variables: A Tool for Modeling Aging and Degradation Phenomena in Composite Materials for Aircraft Applications, Aerotecnica Missili Spazio, Volume 98 (2019) no. 1, p. 31 | DOI:10.1007/s42496-018-0002-z
- Characterization and modeling of filled rubber submitted to thermal aging, International Journal of Solids and Structures, Volume 169 (2019), p. 122 | DOI:10.1016/j.ijsolstr.2019.04.013
- A Fully Coupled Chemomechanical Formulation With Chemical Reaction Implemented by Finite Element Method, Journal of Applied Mechanics, Volume 86 (2019) no. 4 | DOI:10.1115/1.4042431
- Hygrothermoelastic Stress in Organic Matrix Composite Materials, Encyclopedia of Continuum Mechanics (2018), p. 1 | DOI:10.1007/978-3-662-53605-6_94-1
- A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo–chemo-mechanical aging of rubbers, Mechanics of Time-Dependent Materials, Volume 22 (2018) no. 1, p. 51 | DOI:10.1007/s11043-017-9351-2
- , 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2017) | DOI:10.2514/6.2017-0197
- A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction, Journal of the Mechanics and Physics of Solids, Volume 107 (2017), p. 49 | DOI:10.1016/j.jmps.2017.06.013
- A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials, Science China Physics, Mechanics Astronomy, Volume 60 (2017) no. 8 | DOI:10.1007/s11433-017-9044-9
- Fully Coupling Chemomechanical Yield Theory Based on Evolution Equations, International Journal of Applied Mechanics, Volume 08 (2016) no. 04, p. 1650058 | DOI:10.1142/s1758825116500587
- A thermodynamical framework for the thermo-chemo-mechanical couplings in soft materials at finite strain, Mechanics of Materials, Volume 95 (2016), p. 158 | DOI:10.1016/j.mechmat.2016.01.008
- A Fully Coupled Theory and Variational Principle for Thermal–Electrical–Chemical–Mechanical Processes, Journal of Applied Mechanics, Volume 81 (2014) no. 11 | DOI:10.1115/1.4028529
- Non-equilibrium thermodynamics and variational principles for fully coupled thermal-mechanical-chemical processes, Acta Mechanica, Volume 224 (2013) no. 12, pp. 2895-2910 | DOI:10.1007/s00707-013-0907-1 | Zbl:1401.82029
- Thermo-oxidative performance of metal-coated polymers and composites, Surface and Coatings Technology, Volume 232 (2013), p. 166 | DOI:10.1016/j.surfcoat.2013.05.002
- Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane, Comptes Rendus. Mécanique, Volume 339 (2011) no. 10, p. 666 | DOI:10.1016/j.crme.2011.07.003
- A thermo-chemo-mechanical coupled formulation, application to filled rubber, Constitutive Models for Rubber VII (2011), p. 167 | DOI:10.1201/b11687-31
- Assessment of chemo-mechanical couplings in polymer matrix materials exposed to thermo-oxidative environments at high temperatures and under tensile loadings, Mechanics of Materials, Volume 43 (2011) no. 8, p. 431 | DOI:10.1016/j.mechmat.2011.04.007
- Thermo-oxidation behaviour of composite materials at high temperatures: A review of research activities carried out within the COMEDI program, Polymer Degradation and Stability, Volume 95 (2010) no. 6, p. 965 | DOI:10.1016/j.polymdegradstab.2010.03.019
Cité par 24 documents. Sources : Crossref, zbMATH
Commentaires - Politique