[Limite d'élasticité d'un matériau compressible à cavité centrale sous contrainte dynamique]
Une solution analytique rigoureuse est présentée pour un solide compressible comportant une cavité centrale sous une tension dynamique hydrostatique. Pour un solide muni d'une cavité centrale pré-existante, la limite d'élasticité est obtenue préférentiellement dans une zone proche de la cavité plutôt qu'à sa surface. Pour une cavité formée sous charge dynamique, la limite d'élasticité résultante apparaîtra toujours dans une zone dont la distance à la cavité ne dépasse pas 1/4 de la longueur d'onde longitudinale du matériau.
A rigorous analytical solution is presented for a compressible solid with a central void under dynamic hydrostatic tension. It is revealed that for a solid with a preexisting central void under the dynamic loading, the yielding is nucleated preferentially in the zone near the void surface rather than on the void surface. For a void forming under the dynamic load, the subsequent yielding will always initiate in the region with the depth below 1/4 longitudinal wavelength from the void surface.
Accepté le :
Publié le :
Mot clés : Milieux continus, Solide compressible, Cavité, Charge dynamique, Limite d'élasticité, Contrainte
Ming-Chun Cai 1, 2 ; Hui-Ji Shi 1 ; Xian-Feng Ma 1
@article{CRMECA_2010__338_4_207_0, author = {Ming-Chun Cai and Hui-Ji Shi and Xian-Feng Ma}, title = {Yield initiation of compressible material with a central void under dynamic load}, journal = {Comptes Rendus. M\'ecanique}, pages = {207--211}, publisher = {Elsevier}, volume = {338}, number = {4}, year = {2010}, doi = {10.1016/j.crme.2010.03.010}, language = {en}, }
TY - JOUR AU - Ming-Chun Cai AU - Hui-Ji Shi AU - Xian-Feng Ma TI - Yield initiation of compressible material with a central void under dynamic load JO - Comptes Rendus. Mécanique PY - 2010 SP - 207 EP - 211 VL - 338 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2010.03.010 LA - en ID - CRMECA_2010__338_4_207_0 ER -
Ming-Chun Cai; Hui-Ji Shi; Xian-Feng Ma. Yield initiation of compressible material with a central void under dynamic load. Comptes Rendus. Mécanique, Volume 338 (2010) no. 4, pp. 207-211. doi : 10.1016/j.crme.2010.03.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.03.010/
[1] Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media, J. Eng. Technol., Volume 99 (1977), pp. 2-15
[2] Cavitation instabilities in elastic–plastic solids, J. Mech. Phys. Solids, Volume 39 (1991), pp. 223-241
[3] On modelling the growth and the orientation changes of ellipsoidal voids in a rigid plastic matrix, Modell. Simul. Mater. Sci. Eng., Volume 11 (2003), pp. 365-380
[4] An elastoplastic constitutive description based on an ellipsoidal void model, Mater. Sci. Eng. A, Volume 423 (2006), pp. 230-236
[5] Void growth in shear, Proc. R. Soc. London, Ser. A, Volume 407 (1986), pp. 435-458
[6] Effect of strain rate-sensitivity on statistical evolution of microvoids, Sci. China, Ser. A, Volume 39 (1996), pp. 1332-1339
[7] External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void, C. R. Mecanique, Volume 336 (2008), pp. 813-819
[8] Development of constitutive equations for plastic deformation of a porous material using numerical experiments, J. Mater. Process. Technol., Volume 130–131 (2002), pp. 161-167
[9] A physical model for nucleation and early growth of voids in ductile materials under dynamic loading, J. Mech. Phys. Solids, Volume 53 (2005), pp. 1476-1504
[10] An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields, C. R. Mecanique, Volume 335 (2007), pp. 32-41
[11] Elliptical void growth in shear, Proc. R. Soc. London, Ser. A, Volume 451 (1995), pp. 553-570
[12] Scattering of plane longitudinal elastic waves by a slender cavity of revolution. The case of axial incidence, Math. USSR Sb., Volume 49 (1984), pp. 305-323
[13] Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid, J. Appl. Phys., Volume 27 (1956), pp. 1086-1097
[14] Scattering of a plane longitudinal steady wave at a cavity in the form of a body of revolution, Int. Appl. Mech., Volume 21 (1985), pp. 542-546
[15] The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading, J. Mech. Phys. Solids, Volume 51 (2003), pp. 1-26
[16] Dynamic void nucleation and growth in solids: A self-consistent statistical theory, J. Mech. Phys. Solids, Volume 56 (2008), pp. 336-359
[17] Quasistatic and dynamic growth of sub-microscale spherical voids, Mech. Mater., Volume 41 (2009), pp. 584-598
[18] Statistically informed dynamics of void growth in rate dependent materials, Int. J. Impact Eng., Volume 36 (2009), pp. 1242-1249
[19] Micromechanical modelling of porous materials under dynamic loading, J. Mech. Phys. Solids, Volume 49 (2001), pp. 1497-1516
[20] Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech., Volume 59 (1992), pp. 48-53
[21] Constitutive modeling of porous hyperelastic materials, Mech. Mater., Volume 36 (2004), pp. 347-358
Cité par Sources :
Commentaires - Politique