Comptes Rendus
Yield initiation of compressible material with a central void under dynamic load
[Limite d'élasticité d'un matériau compressible à cavité centrale sous contrainte dynamique]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 4, pp. 207-211.

Une solution analytique rigoureuse est présentée pour un solide compressible comportant une cavité centrale sous une tension dynamique hydrostatique. Pour un solide muni d'une cavité centrale pré-existante, la limite d'élasticité est obtenue préférentiellement dans une zone proche de la cavité plutôt qu'à sa surface. Pour une cavité formée sous charge dynamique, la limite d'élasticité résultante apparaîtra toujours dans une zone dont la distance à la cavité ne dépasse pas 1/4 de la longueur d'onde longitudinale du matériau.

A rigorous analytical solution is presented for a compressible solid with a central void under dynamic hydrostatic tension. It is revealed that for a solid with a preexisting central void under the dynamic loading, the yielding is nucleated preferentially in the zone near the void surface rather than on the void surface. For a void forming under the dynamic load, the subsequent yielding will always initiate in the region with the depth below 1/4 longitudinal wavelength from the void surface.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2010.03.010
Keywords: Continuum mechanics, Compressible solid, Void, Dynamic load, Yield, Stress
Mot clés : Milieux continus, Solide compressible, Cavité, Charge dynamique, Limite d'élasticité, Contrainte

Ming-Chun Cai 1, 2 ; Hui-Ji Shi 1 ; Xian-Feng Ma 1

1 AML, School of Aerospace, Tsinghua University, 100084 Beijing, China
2 Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
@article{CRMECA_2010__338_4_207_0,
     author = {Ming-Chun Cai and Hui-Ji Shi and Xian-Feng Ma},
     title = {Yield initiation of compressible material with a central void under dynamic load},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {207--211},
     publisher = {Elsevier},
     volume = {338},
     number = {4},
     year = {2010},
     doi = {10.1016/j.crme.2010.03.010},
     language = {en},
}
TY  - JOUR
AU  - Ming-Chun Cai
AU  - Hui-Ji Shi
AU  - Xian-Feng Ma
TI  - Yield initiation of compressible material with a central void under dynamic load
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 207
EP  - 211
VL  - 338
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2010.03.010
LA  - en
ID  - CRMECA_2010__338_4_207_0
ER  - 
%0 Journal Article
%A Ming-Chun Cai
%A Hui-Ji Shi
%A Xian-Feng Ma
%T Yield initiation of compressible material with a central void under dynamic load
%J Comptes Rendus. Mécanique
%D 2010
%P 207-211
%V 338
%N 4
%I Elsevier
%R 10.1016/j.crme.2010.03.010
%G en
%F CRMECA_2010__338_4_207_0
Ming-Chun Cai; Hui-Ji Shi; Xian-Feng Ma. Yield initiation of compressible material with a central void under dynamic load. Comptes Rendus. Mécanique, Volume 338 (2010) no. 4, pp. 207-211. doi : 10.1016/j.crme.2010.03.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.03.010/

[1] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media, J. Eng. Technol., Volume 99 (1977), pp. 2-15

[2] Y. Huang; J.W. Hutchinson; V. Tvergaard Cavitation instabilities in elastic–plastic solids, J. Mech. Phys. Solids, Volume 39 (1991), pp. 223-241

[3] C. Bordreuil; J.C. Boyer; E. Salle On modelling the growth and the orientation changes of ellipsoidal voids in a rigid plastic matrix, Modell. Simul. Mater. Sci. Eng., Volume 11 (2003), pp. 365-380

[4] B. Chen; X. Peng; J. Fan; S. Chen An elastoplastic constitutive description based on an ellipsoidal void model, Mater. Sci. Eng. A, Volume 423 (2006), pp. 230-236

[5] N.A. Fleck; J.W. Hutchinson Void growth in shear, Proc. R. Soc. London, Ser. A, Volume 407 (1986), pp. 435-458

[6] H.L. Li; Z.P. Huang Effect of strain rate-sensitivity on statistical evolution of microvoids, Sci. China, Ser. A, Volume 39 (1996), pp. 1332-1339

[7] J.B. Leblond; M. Gologanu External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void, C. R. Mecanique, Volume 336 (2008), pp. 813-819

[8] Y.S. Lee Development of constitutive equations for plastic deformation of a porous material using numerical experiments, J. Mater. Process. Technol., Volume 130–131 (2002), pp. 161-167

[9] A. Molinari; T.W. Wright A physical model for nucleation and early growth of voids in ductile materials under dynamic loading, J. Mech. Phys. Solids, Volume 53 (2005), pp. 1476-1504

[10] V. Monchiet; E. Charkaluk; D. Kondo An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields, C. R. Mecanique, Volume 335 (2007), pp. 32-41

[11] K.L. Pan; Z.P. Huang; X. Ji Elliptical void growth in shear, Proc. R. Soc. London, Ser. A, Volume 451 (1995), pp. 553-570

[12] G.V. Zhdanova Scattering of plane longitudinal elastic waves by a slender cavity of revolution. The case of axial incidence, Math. USSR Sb., Volume 49 (1984), pp. 305-323

[13] C.F. Ying; R. Truell Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid, J. Appl. Phys., Volume 27 (1956), pp. 1086-1097

[14] A.S. Ovsyannikov; V.A. Starikov Scattering of a plane longitudinal steady wave at a cavity in the form of a body of revolution, Int. Appl. Mech., Volume 21 (1985), pp. 542-546

[15] X.Y. Wu; K.T. Ramesh; T.W. Wright The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading, J. Mech. Phys. Solids, Volume 51 (2003), pp. 1-26

[16] T.W. Wright; K.T. Ramesh Dynamic void nucleation and growth in solids: A self-consistent statistical theory, J. Mech. Phys. Solids, Volume 56 (2008), pp. 336-359

[17] T.C. Tszeng Quasistatic and dynamic growth of sub-microscale spherical voids, Mech. Mater., Volume 41 (2009), pp. 584-598

[18] T.W. Wright; K.T. Ramesh Statistically informed dynamics of void growth in rate dependent materials, Int. J. Impact Eng., Volume 36 (2009), pp. 1242-1249

[19] A. Molinari; S. Mercier Micromechanical modelling of porous materials under dynamic loading, J. Mech. Phys. Solids, Volume 49 (2001), pp. 1497-1516

[20] M. Ortiz; A. Molinari Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech., Volume 59 (1992), pp. 48-53

[21] M. Danielsson; D.M. Parks; M.C. Boyce Constitutive modeling of porous hyperelastic materials, Mech. Mater., Volume 36 (2004), pp. 347-358

Cité par Sources :

Commentaires - Politique