Comptes Rendus
Sequential Monte Carlo hydraulic state estimation of an irrigation canal
Comptes Rendus. Mécanique, Volume 338 (2010) no. 4, pp. 212-219.

The estimation in real time of the hydraulic state of irrigation canals is becoming one of the major concerns of network managers. With this end in view, this Note presents a new approach based on the combination of a numerical solution of the open channel Saint-Venant PDE with a sequential Monte Carlo state-space estimation. We shall show that discharges and elevations along the canal are successfully estimated, and also that, concurrently, model parameters identification, such as the Manning–Strickler friction coefficient, can be performed.

L'estimation en temps réel de l'état hydraulique de canaux d'irrigation devient l'une des préoccupations majeures des gestionnaires de réseaux. A cette fin, cette Note présente une nouvelle approche qui combine une solution numérique des EDP de Saint-Venant pour les écoulements à surface libre avec une estimation d'état basée sur une méthode Monte Carlo séquentielle. Nous montrons que les débits et côtes le long du canal sont reproduits, et aussi que l'identification simultanée de paramètres du modèle, comme le coefficient de frottement de Manning–Strickler, peut être réalisée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2010.03.013
Keywords: Fluid mechanics, Open channel flow, Data assimilation, Sequential Monte Carlo, Irrigation canals
Mots-clés : Mécanique des fluides, Écoulement à surface libre, Assimilation de données, Monte Carlo séquentiel, Canaux d'irrigation

Jacques Sau 1; Pierre-Olivier Malaterre 2; Jean-Pierre Baume 2

1 LMFA, UMR 5509, Université Lyon 1, 69622 Villeurbanne cedex, France
2 UMR G-EAU, Cemagref, BP 5095, 34196 Montpellier cedex 5, France
@article{CRMECA_2010__338_4_212_0,
     author = {Jacques Sau and Pierre-Olivier Malaterre and Jean-Pierre Baume},
     title = {Sequential {Monte} {Carlo} hydraulic state estimation of an irrigation canal},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {212--219},
     publisher = {Elsevier},
     volume = {338},
     number = {4},
     year = {2010},
     doi = {10.1016/j.crme.2010.03.013},
     language = {en},
}
TY  - JOUR
AU  - Jacques Sau
AU  - Pierre-Olivier Malaterre
AU  - Jean-Pierre Baume
TI  - Sequential Monte Carlo hydraulic state estimation of an irrigation canal
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 212
EP  - 219
VL  - 338
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2010.03.013
LA  - en
ID  - CRMECA_2010__338_4_212_0
ER  - 
%0 Journal Article
%A Jacques Sau
%A Pierre-Olivier Malaterre
%A Jean-Pierre Baume
%T Sequential Monte Carlo hydraulic state estimation of an irrigation canal
%J Comptes Rendus. Mécanique
%D 2010
%P 212-219
%V 338
%N 4
%I Elsevier
%R 10.1016/j.crme.2010.03.013
%G en
%F CRMECA_2010__338_4_212_0
Jacques Sau; Pierre-Olivier Malaterre; Jean-Pierre Baume. Sequential Monte Carlo hydraulic state estimation of an irrigation canal. Comptes Rendus. Mécanique, Volume 338 (2010) no. 4, pp. 212-219. doi : 10.1016/j.crme.2010.03.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.03.013/

[1] J.-L. Deltour; E. Canivet; F. Sanfilippo; J. Sau Data reconciliation on the complex hydraulic system of Canal de Provence, Journal of Irrigation and Drainage Engineering, Volume 131 (2005) no. 3, pp. 291-297

[2] A. Doucet; N. de Freitas; N. Gordon Sequential Monte Carlo Methods in Practice, Springer, 2001

[3] B. Ristic; S. Arulampalam; N. Gordon Beyond the Kalman Filter, Particle Filters for Tracking Applications, Artech House, Boston, London, 2004

[4] J.-P. Baume; P.-O. Malaterre; G. Belaud; B. Le Guennec SIC: a 1D hydrodynamic model for river and irrigation canal modeling and regulation (Rui Carlos Vieira da Silva, ed.), Métodos Numéricos em Recursos Hidricos 7, ABRH (Associacao Brasileira de Recursos Hidricos), Coppetec Fundacao, 2005, pp. 1-81 (ISBN: 85-88686-14-7)

[5] D. Rogier, C. Coeuret, J. Brémond, Dynamic regulation on the canal de Provence. Planning operation, rehabilitation and automation of irrigation water delivery systems, in: Symposium ASCE, Portland, Oregon, 23–30 July 1987

[6] A. Doucet, On sequential simulation-based methods for Bayesian filtering, Technical report CUED/F-INFENG/TR.310, University of Cambridge, 1998

[7] M.S. Arulampalam; S. Maskell; N. Gordon; T. Clapp A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, Volume 50 (2002) no. 2, pp. 174-188

[8] J.-P. Baume, J. Sau, P.-O. Malaterre, Modeling of irrigation channel dynamics for controller design, in: IEEE Int. Conference on Systems, Man & Cybernetics (SMC98), San Diego, California, October 11–14, 1998, pp. 3856–3861

[9] P.-O. Malaterre; D.C. Rogers; J. Schuurmans Classification of canal control algorithms, ASCE Journal of Irrigation and Drainage Engineering, Volume 124 (1998) no. 1, pp. 3-10

[10] M. Lüscher A portable high-quality random number generator for lattice field theory simulations, Computer Physics Communications, Volume 79 (1994), pp. 100-110

[11] F. James RANLUX: A Fortran implementation of the high-quality pseudorandom number generator of Lüscher, Computer Physics Communications, Volume 79 (1994), pp. 111-114

Cited by Sources:

Comments - Policy