This Note presents the study of transient flow under forced convection in buried co-axial exchanger. The wall temperature as well as the wall heat flux and the heat transfer coefficient are unknown. A hybrid model consisting of a finite element method at the boundary (BEM) for the heat transfer problem on the boundary and a finite volume method (FVM) to solve the laminar flow inside solves this problem. The development of the BEM method is based on the Green's function theory. This conjugate method allows one to have fast results and to foresee the thermal behaviour of the exchanger. The heat transfer coefficients are investigated. The results are compared to those obtained using the commercial CFD package Fluent.
Accepted:
Published online:
Taoufik Mnasri 1; Rached Ben Younès 1; Atef Mazioud 2; Jean Felix Durastanti 2
@article{CRMECA_2010__338_4_220_0, author = {Taoufik Mnasri and Rached Ben Youn\`es and Atef Mazioud and Jean Felix Durastanti}, title = {FVM-BEM method based on the {Green's} function theory for the heat transfer problem in buried co-axial exchanger}, journal = {Comptes Rendus. M\'ecanique}, pages = {220--229}, publisher = {Elsevier}, volume = {338}, number = {4}, year = {2010}, doi = {10.1016/j.crme.2010.04.004}, language = {en}, }
TY - JOUR AU - Taoufik Mnasri AU - Rached Ben Younès AU - Atef Mazioud AU - Jean Felix Durastanti TI - FVM-BEM method based on the Green's function theory for the heat transfer problem in buried co-axial exchanger JO - Comptes Rendus. Mécanique PY - 2010 SP - 220 EP - 229 VL - 338 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2010.04.004 LA - en ID - CRMECA_2010__338_4_220_0 ER -
%0 Journal Article %A Taoufik Mnasri %A Rached Ben Younès %A Atef Mazioud %A Jean Felix Durastanti %T FVM-BEM method based on the Green's function theory for the heat transfer problem in buried co-axial exchanger %J Comptes Rendus. Mécanique %D 2010 %P 220-229 %V 338 %N 4 %I Elsevier %R 10.1016/j.crme.2010.04.004 %G en %F CRMECA_2010__338_4_220_0
Taoufik Mnasri; Rached Ben Younès; Atef Mazioud; Jean Felix Durastanti. FVM-BEM method based on the Green's function theory for the heat transfer problem in buried co-axial exchanger. Comptes Rendus. Mécanique, Volume 338 (2010) no. 4, pp. 220-229. doi : 10.1016/j.crme.2010.04.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.04.004/
[1] V.-C. Mei, S.-K. Fischer, A theoretical and experimental analysis of vertical, concentric-tube ground-coupled heat exchangers, Oak Ridge National Laboratory, Martin Marieta Energy Systems, Inc., 1984
[2] J.-Y. Desmons, Formulation et résolution numérique de problèmes aux limites appliquées aux générateurs de chaleurs tubulaires enterrées, Thèse de Doctorat d'Etat, Université de Valenciennes, 1984
[3] Prévision à long terme de la réponse d'un stockage de chaleur sensible dans le sol, Int. J. Heat Mass Transfer, Volume 40 (1997), pp. 3119-3134
[4] Coupled conduction and intermittent convective heat transfer from a buried pipe, Heat Transfer Engrg., Volume 23 (2002), pp. 34-43
[5] Transient-based technique for the evaluation of the overall heat transfer coefficient in a concentric tube heat exchanger, Int. J. Heat Exchangers, Volume 5 (2004), pp. 15-28
[6] Simulation of convective heat-transfer coefficient in a buried exchanger, Amer. J. Appl. Sci., Volume 5 (2007), pp. 927-933
[7] T. Mnasri, R. Ben Younès, A. Mazioud, J.F. Durastanti, Étude du coefficient de transfert d'un échangeur bi-tubulaire enterré en régime instationnaire, in: Congrès français de thermique (SFT), Ile des Embiez, vol. 1, 2007, pp. 361–366
[8] P. Hollmuller, Utilisation des échangeurs air/sol pour le chauffage et le rafraîchissement des bâtiments. Mesures in situ, modélisation analytique, simulation numérique et analyse systémique, Ph.D. thesis, Université de Genève, 2002
[9] Conduction of Heat in Solids, Oxford University Press, London, 1959
[10] Convective heat transfer coefficients in concentric annuli, Heat Transfer Engrg., Volume 26 (2005), pp. 38-44
[11] Some measurements of turbulent heat transfer in the thermal entrance region of concentric annuli, Int. J. Heat Mass Transfer, Volume 10 (1967), pp. 267-276
[12] M.K.L. Boelter, G. Young, H.W. Inversen, Distribution of heat transfer rate in the entrance section of circular tube, National Advisory Committee for Aeronautics, Technical Note 1451, 1948
[13] Transmission de la chaleur, McGraw-Hill, New York, 1954
[14] A Heat Transfer Textbook, Phlogistron Press, Cambridge, 2002
[15] Heat transfer and friction coefficients for turbulent flow of air in smooth annuli at high temperatures, Int. J. Heat Mass Transfer, Volume 16 (1973), pp. 787-809
[16] A modified form of the model for predicting wall turbulence, J. Fluids Engrg., Volume 103 (1981), pp. 456-460
[17] Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, McGraw-Hill, New York, 1980
[18] E. Divo, E. Steinthorsson, F. Rodriguez, A.-J. Kassab, J.-S. Kapat, Glenn-HT/BEM conjugate heat transfer solver for large-scale turbomachinery models, NASA Glenn Research Center, NASA CR-2003-212195, 2003
[19] BEM/FVM conjugate heat transfer analysis of a three-dimensional film cooled turbine blade, Int. J. Numer. Methods Heat Fluid Flow, Volume 13 (2003), pp. 581-610
[20] A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Engrg., Volume 54 (2002), pp. 1623-1648
[21] Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys., Volume 212 (2006), pp. 99-123
[22] Gambit User Manual, ver. 6.2, Fluent, Inc., 2005
[23] Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method, Appl. Energy, Volume 86 (2009), pp. 1683-1691
Cited by Sources:
Comments - Policy