[Influence du combustible sur la mesure de richesse par chimiluminescence dans les flammes prémélangées]
Des mesures locales et résolues en temps de l'intensité de chimiluminescence des radicaux OH∗, CH∗ et C∗2 ont été réalisées dans des flammes à contre-courant alimentées par du propane ou des combustibles prévaporisés (isooctane, éthanol, méthanol) pour différents taux d'étirement et différentes richesses. Les résultats quantifient indépendamment l'influence du combustible, du taux d'étirement et de la richesse sur les émissions de chimiluminescence des flammes. La capacité de l'intensité de chimiluminescence à décrire le taux de dégagement de chaleur dépend fortement de la nature du combustible. Le rapport d'intensité OH∗/CH∗ décroit de façon monotone avec la richesse pour tous les combustibles et peut être utilisé pour mesurer la richesse du mélange réactif. Pour le propane et l'isooctane, le rapport OH∗/CH∗ est indépendant du taux d'étirement de la flamme, alors qu'une dépendance est observée pour l'éthanol et le méthanol.
Local temporally-resolved measurements of chemiluminescent intensity from OH∗, CH∗ and C∗2 radicals were obtained in premixed counterflow flames operating with propane and prevaporised fuels (isooctane, ethanol and methanol), for different equivalence ratios and strain rates. The results quantified independently the effects of fuel type, strain rate and equivalence ratio on chemiluminescent emissions from flames. The ability of chemiluminescent intensity from OH∗, CH∗ and C∗2 radicals to indicate heat release rate depends strongly on fuel type. The intensity ratio OH∗/CH∗ has a monotonic decrease with equivalence ratio for all fuels and can be used to measure equivalence ratio of the reacting mixture. For propane and isooctane, the OH∗/CH∗ ratio remains independent of flame strain rate, whereas some dependence is observed for ethanol and methanol.
Accepté le :
Publié le :
Mot clés : Combustion, Richesse, Chimiluminescence, Dégagement de chaleur, Flammes prémélangées, Type de combustible
Mikaël Orain 1 ; Yannis Hardalupas 2
@article{CRMECA_2010__338_5_241_0, author = {Mika\"el Orain and Yannis Hardalupas}, title = {Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames}, journal = {Comptes Rendus. M\'ecanique}, pages = {241--254}, publisher = {Elsevier}, volume = {338}, number = {5}, year = {2010}, doi = {10.1016/j.crme.2010.05.002}, language = {en}, }
TY - JOUR AU - Mikaël Orain AU - Yannis Hardalupas TI - Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames JO - Comptes Rendus. Mécanique PY - 2010 SP - 241 EP - 254 VL - 338 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2010.05.002 LA - en ID - CRMECA_2010__338_5_241_0 ER -
Mikaël Orain; Yannis Hardalupas. Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames. Comptes Rendus. Mécanique, Volume 338 (2010) no. 5, pp. 241-254. doi : 10.1016/j.crme.2010.05.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.05.002/
[1] Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame, Combustion and Flame, Volume 139 (2004), pp. 188-207
[2] An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames, Fuel, Volume 80 (2001), pp. 1583-1591
[3] Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames, Fuel, Volume 80 (2001), pp. 67-74
[4] Instantaneous measuring method of air–fuel ratio by luminous intensity of radicals, Jidousha Gijyutsukai Ronbunshu, Volume 29 (1984), pp. 10-17
[5] An instantaneous measuring method of air–fuel ratio by luminous intensity of radicals (applications to practical burner flames), JSME Transactions B, Volume 52 (1986), pp. 3362-3371
[6] In-cylinder measurement of mixture maldistribution in L-head engine, Combustion and Flame, Volume 101 (1995), pp. 45-57
[7] Flame emission spectroscopy for equivalence ratio monitoring, Appl. Spect., Volume 52 (1998), pp. 658-662
[8] Spatially resolved measurement of OH∗ CH∗ and C∗2 chemiluminescence in the reaction zone of laminar methane/air premixed flames, Proc. Comb. Inst., Volume 28 (2000), pp. 1757-1764
[9] Development of the optical probe for flame diagnostics (estimation by ray tracing method), JSME Transactions, Volume 964 (1996), pp. 567-568
[10] The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields, Meas. Sci. Technol., Volume 10 (1999), pp. 1240-1246
[11] Measurements of the local flame front structure of turbulent premixed flames by local chemiluminescence, Proc. Comb. Inst., Volume 28 (2000), pp. 343-350
[12] Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame, Proc. Comb. Inst., Volume 29 (2002), pp. 1495-1501
[13] Multi-point time-series observation of optical emissions for flame-front motion analysis, Meas. Sci. Technol., Volume 14 (2003), pp. 1714-1724
[14] M. Kaneko, Y. Ikeda, T. Nakajima, Measurements of local of flame front characteristics and A/F of SI engine by local chemiluminescence, OH∗, CH∗ and C∗2, in: Proc. of the 16th Internal Combustion Symposium, 2000, pp. 371–375
[15] Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK), Applied Thermal Engineering, Volume 24 (2004), pp. 1619-1632
[16] Y. Hardalupas, M. Orain, Local equivalence ratio and degree of premixedness of reacting mixture in swirl-stabilised natural gas fuelled burners, AIAA Paper 2005-1164, 2005
[17] J. Kojima, Y. Ikeda, T. Nakajima, Detail distributions of OH∗, CH∗ and C∗2 chemiluminescence in the reaction zone of laminar premix methane/air flames, AIAA Paper 2000-3394, 2000
[18] Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane–air premixed flames, Combustion and Flame, Volume 140 (2005), pp. 34-45
[19] Y. Hardalupas, C.S. Panoutsos, A.M.K.P. Taylor, Spatial resolution of a chemiluminescence sensor in a model gas turbine combustor, AIAA Paper 2005-1319, 2005
[20] Flame stretch rate as a determinant of turbulent burning velocity, Phil. Trans. R. Soc. Lond. A, Volume 338 (1992), pp. 359-387
[21] Direct experimental determination of laminar flame speeds, Proc. Comb. Inst., Volume 27 (1998), pp. 513-519
[22] Sound emission from open turbulent premixed flames, Proc. R. Soc. London, Series A, Volume 303 (1968), pp. 409-427
[23] Effect of turbulence on radiation intensity from propane–air flames, Jet Propulsion, Volume 27 (1957), pp. 169-178
[24] Fundamental mechanisms in premixed turbulent flame propagation via flame–vortex interactions. Part I: Experiment, Combustion and Flame, Volume 118 (1999), pp. 537-556
[25] Sensors for measuring primary zone equivalence ratio in gas turbine combustors, Proc. SPIE Advanced Sensors and Monitors for Process Industries and the Environment, Volume 3535 (1999), pp. 104-114
[26] The Spectroscopy of Flames, Wiley, New York, 1957
[27] Detection of the air equivalence ratio of a burner from the flame emission spectra, International Chemical Engineering, Volume 30 (1992), pp. 160-168
[28] Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy, Appl. Phys. B, Volume 75 (2002), pp. 577-590
[29] Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine, Combustion and Flame, Volume 136 (2004), pp. 72-90
[30] Mapping of luminescent species in a flame front, Combustion Science and Technology, Volume 139 (1998), pp. 1-13
[31] Chemiluminescent emission data for kinetic modelling of ethanol combustion, Combustion Science and Technology, Volume 177 (2005), pp. 1-26
[32] S. Singh, W. Grosshandler, P.C. Malte, R.W. Crain, Jr., Oxides of nitrogen formed in high-intensity methanol combustion, in: 17th Int. Symp. on Comb., 1978, pp. 689–699
[33] N. Iida, Combustion analysis of methanol-fuelled active thermo-atmosphere combustion (ATAC) engine using a spectroscopic observation, SAE Paper 940684, 1994
[34] J.T. Farrell, R.J. Johnston, I.P. Androulakis, Molecular structure effects on laminar burning velocities at elevated temperature and pressure, SAE Paper 2004-01-2936, 2004
[35] Numerical and experimental studies of hydroxyl radical chemiluminescence in methane–air flames, Combustion Science and Technology, Volume 82 (1992), pp. 131-150
[36] K.T. Walsh, M.B. Long, M.A. Tanoff, M.D. Smooke, Experimental and computational study of CH, CH∗, and OH∗ in an axisymmetric laminar diffusion flame, in: 27th Int. Symp. on Comb., 1998, pp. 615–623
[37] Direct identification of the C2H (X2Σ+) + O (3P) → CH (A2Δ) + CO reaction as the source of the CH (A2Δ → X2Π) chemiluminescence in C2H2/O/H atomic flames, J. Phys. Chem. A, Volume 101 (1997), pp. 2546-2551
[38] C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames, Combustion and Flame, Volume 141 (2005), pp. 66-77
[39] V.N. Nori, J.M. Seitzman, CH∗ chemiluminescence modeling for combustion diagnostics, in: Proceedings of the 32th Int. Symp. on Comb., 2009, pp. 895–903
[40] A global reaction model for OH∗ chemiluminescence applied to a laminar flat-flame burner, Combustion Science and Technology, Volume 175 (2003), pp. 1859-1891
[41] A.J. Marchese, F.L. Dryer, V. Nayagam, R.O. Colantonio, Hydroxyl radical chemiluminescence imaging and the structure of microgravity droplet flames, in: 26th Int. Symp. on Comb., 1996, pp. 1219–1226
[42] Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames, Combustion and Flame, Volume 108 (1997), pp. 349-356
[43] Lewis number effects on turbulent burning velocity, Proc. Comb. Inst., Volume 20 (1984), pp. 505-512
[44] The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combustion and Flame, Volume 115 (1998), pp. 126-144
[45] Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures, Applied Thermal Engineering, Volume 27 (2007), pp. 374-380
[46] Characterization of laminar premixed methanol–air flames, Fuel, Volume 85 (2006), pp. 1346-1353
[47] T.M. Muruganandam, B.H. Kim, M.R. Morell, V. Nori, M. Patel, B.W. Romig, J.M. Seitzman, Optical equivalence ratio sensors for gas turbine combustors, in: 30th Int. Symp. on Comb., 2005, pp. 1601–1609
[48] N. Iida, K. Kidogucho, S. Kubo, Study of radical luminescence of premixed flames – Equivalence ratio dependence on radical luminescence spectra from gasoline, methanol and methane flames, in: 12th Int. Symp. of Alcohol Fuels, 1998, pp. 270–278
Cité par Sources :
Commentaires - Politique