[Analyse de sensibilité aux paramètres d'une méthode d'inversion sismique reposant sur les formes d'onde anélastiques et les moindres carrés non linéaires]
Nous avons décrit dans un article récent une méthode d'inversion sismique, formulée comme un problème de moindres carrés non linéaires assujetti à des contraintes correspondant aux équations décrivant le problème direct de propagation d'ondes, permettant de déterminer la célérité et l'atténuation crustales de bassins situés dans des zones à forte seismicité. Dans cet article, une étude paramétrique est menée afin d'évaluer l'influence sur le coût et la qualité de l'inversion de paramètres tels que la forme de la fonctionnelle de régularisation, la densité de capteurs, le préconditionnement, le niveau de bruit entachant les données et la méthode de raffinement progressif de l'espace des inconnues. L'exemple utilisé (modèle 2D du bassin de Los Angeles) est le même que dans l'article précédent.
In a recent article, we described a seismic inversion method for determining the crustal velocity and attenuation of basins in earthquake-prone regions. We formulated the problem as a constrained nonlinear least-squares optimization problem in which the constraints are the equations that describe the forward wave propagation. Here, we conduct a parametric study to investigate the influence of parameters such as the form of the regularization function, receiver density, preconditioning, noise level of the data, and the multilevel continuation technique on the cost and quality of the inversion. We use the same 2D Los Angeles example as in our earlier study.
Mot clés : Ondes, Inversion par forme d'onde, Formulation adjointe, Atténuation intrinsèque
Aysegul Askan 1 ; Volkan Akcelik 2 ; Jacobo Bielak 2 ; Omar Ghattas 3
@article{CRMECA_2010__338_7-8_364_0, author = {Aysegul Askan and Volkan Akcelik and Jacobo Bielak and Omar Ghattas}, title = {Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method}, journal = {Comptes Rendus. M\'ecanique}, pages = {364--376}, publisher = {Elsevier}, volume = {338}, number = {7-8}, year = {2010}, doi = {10.1016/j.crme.2010.07.002}, language = {en}, }
TY - JOUR AU - Aysegul Askan AU - Volkan Akcelik AU - Jacobo Bielak AU - Omar Ghattas TI - Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method JO - Comptes Rendus. Mécanique PY - 2010 SP - 364 EP - 376 VL - 338 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2010.07.002 LA - en ID - CRMECA_2010__338_7-8_364_0 ER -
%0 Journal Article %A Aysegul Askan %A Volkan Akcelik %A Jacobo Bielak %A Omar Ghattas %T Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method %J Comptes Rendus. Mécanique %D 2010 %P 364-376 %V 338 %N 7-8 %I Elsevier %R 10.1016/j.crme.2010.07.002 %G en %F CRMECA_2010__338_7-8_364_0
Aysegul Askan; Volkan Akcelik; Jacobo Bielak; Omar Ghattas. Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method. Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 364-376. doi : 10.1016/j.crme.2010.07.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.002/
[1] Inversion of seismic reflection data in the acoustic approximation, Geophysics, Volume 49 (1984), pp. 1259-1266
[2] Inverse Problem Theory and Model Parameter Estimation, SIAM, Philadelphia, PA, 2005
[3] Generalized nonlinear inverse problems solved using the least squares criterion, Rev. Geophys. Space Phys., Volume 20 (1982), pp. 219-232
[4] Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Int., Volume 160 (2005), pp. 195-216
[5] Full 3D tomography for crustal structure of the Los Angeles region, Bull. Seism. Soc. Am., Volume 97 (2007), pp. 1094-1120
[6] Inverse theory applied to multi-source cross-hole tomography. Part I: Acoustic wave-equation method, Geophys. Prospect., Volume 38 (1990), pp. 287-310
[7] Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies, Geophysics, Volume 69 (2004), pp. 231-248
[8] Quantitative imaging of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform inversions: a case study, Geophys. Prospect., Volume 52 (2004), pp. 625-651
[9] Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt, Geophys. J. Int., Volume 159 (2004), pp. 1032-1056
[10] Theoretical background for the inversion of seismic waveforms including elasticity and attenuation, Pure Appl. Geophys., Volume 128 (1988), pp. 365-399
[11] In situ measurements of damping ratio using surface waves, J. Geotech. Geoenviron. Engng., Volume 126 (2000), pp. 472-480
[12] Reflection waveform inversion using local descent methods: estimating attenuation and velocity over a gas-sand deposit, Geophysics, Volume 66 (2001), pp. 598-612
[13] Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures, Bull. Seism. Soc. Am., Volume 97 (2007) no. 6, pp. 1990-2008
[14] The SCEC Southern California reference three-dimensional seismic velocity model, Version 2, Bull. Seism. Soc. Am., Volume 90 (2000), p. S65-S76
[15] A. Askan, Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2006.
[16] Memory efficient simulation of anelastic wave propagation, Bull. Seism. Soc. Am., Volume 91 (2001), pp. 520-531
[17] The finite-difference time-domain method for modelling of seismic wave propagation (Ru-Shan Wu; Valerie Maupin, eds.), Advances in Wave Propagation in Heterogeneous Earth, Advances in Geophysics, vol. 48, Academic Press, New York, MA, 2007, pp. 421-516
[18] Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: The Krylov–Schur solver, SIAM J. Sci. Comput., Volume 27 (2005) no. 2, pp. 687-713
[19] Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part II: The Lagrange–Newton solver, and its application to optimal control of steady viscous flows, SIAM J. Sci. Comput., Volume 27 (2005) no. 2, pp. 714-739
[20] Parallel algorithms for PDE-constrained optimization (M. Heroux; P. Raghaven; H. Simon, eds.), Frontiers of Parallel Computing, SIAM, 2006
[21] V. Akcelik, G. Biros, O. Ghattas, Parallel multiscale Gauss–Newton–Krylov methods for inverse wave propagation, in: Proceedings of ACM/IEEE SC2002, 2002.
[22] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas, E.J. Kim, J. Lopez, D. O'Hallaron, T. Tu, J. Urbanic, High-resolution forward and inverse earthquake modeling on terascale computers, in: Proceedings of ACM/IEEE SC2003, 2003.
[23] Numerical Optimization, Springer, New York, 1999
[24] Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, Volume 10 (1994), pp. 1217-1229
[25] Computational Methods for Inverse Problems, SIAM, 2002
[26] Smoothing noisy data with spline functions, Numer. Math., Volume 31 (1979), pp. 377-403
[27] Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., Volume 17 (1996), pp. 16-32
[28] Multiscale seismic waveform inversion, Geophysics, Volume 50 (1995), pp. 1457-1473
[29] Automatic preconditioning by limited memory quasi-Newton updating, Siam J. Optim., Volume 10 (2000) no. 4, pp. 1079-1096
[30] A Newton–CG method for large-scale three-dimensional elastic full-waveform seismic inversion, Inverse Problems, Volume 24 (2008), p. 034015 (26 pp)
Cité par Sources :
Commentaires - Politique