Comptes Rendus
Topological sensitivity of energy cost functional for wave-based defect identification
[Gradient topologique d'une fonction-coût énergétique pour l'identification de défauts en élastodynamique]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 377-389.

Cet article porte sur la formulation du champ de gradient topologique (GT), correspondant à l'apparition de petites inclusions virtuelles dans le milieu, d'une fonction-coût de type énergétique. Cette dernière quantifie l'écart entre deux états élastodynamiques en régime fréquentiel (respectivement définis en termes de données de type Dirichlet ou Neumann sur la frontière pour des situations d'identification exploitant la possession de données aux limites surabondantes) comme l'énergie de déformation de leur différence. Ce type de fonction-coût constitue une forme particulière d'erreur en relation de comportement et peut être utilisée par exemple pour l'identification de défauts. Le GT est exprimée en termes de quatre champs élastodynamiques, à savoir les champs libre et adjoint associés à chaque type de données aux limites. Un résultat similaire est également donné pour le cas de l'acoustique linéaire. L'application du résultat à l'identification qualittative d'une inclusion est présenté sur une configuration 2D acoustique simple.

This article is concerned with establishing the topological sensitivity (TS) against the nucleation of small trial inclusions of an energy-like cost function. The latter measures the discrepancy between two time-harmonic elastodynamic states (respectively defined, for cases where overdetermined boundary data is available for identification purposes, in terms of Dirichlet or Neumann boundary data for the same reference solid) as the strain energy of their difference. Such cost function constitutes a particular form of error in constitutive relation and may be used for e.g. defect identification. The TS is expressed in terms of four elastodynamic fields, namely the free and adjoint solutions for Dirichlet or Neumann data. A similar result is also given for the linear acoustic scalar case. A synthetic numerical example where the TS result is used for the qualitative identification of an inclusion is presented for a simple 2D acoustic configuration.

Publié le :
DOI : 10.1016/j.crme.2010.07.016
Keywords: Topological sensitivity, Energy-like functional, Elastodynamics, Defect identification
Mot clés : Gradient topologique, Fonction-coût énergétique, Elastodynamique, Identification de défauts
Marc Bonnet 1

1 Laboratoire de mécanique des solides (UMR CNRS 7649), École polytechnique, 91128 Palaiseau cedex, France
@article{CRMECA_2010__338_7-8_377_0,
     author = {Marc Bonnet},
     title = {Topological sensitivity of energy cost functional for wave-based defect identification},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {377--389},
     publisher = {Elsevier},
     volume = {338},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.016},
     language = {en},
}
TY  - JOUR
AU  - Marc Bonnet
TI  - Topological sensitivity of energy cost functional for wave-based defect identification
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 377
EP  - 389
VL  - 338
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.016
LA  - en
ID  - CRMECA_2010__338_7-8_377_0
ER  - 
%0 Journal Article
%A Marc Bonnet
%T Topological sensitivity of energy cost functional for wave-based defect identification
%J Comptes Rendus. Mécanique
%D 2010
%P 377-389
%V 338
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2010.07.016
%G en
%F CRMECA_2010__338_7-8_377_0
Marc Bonnet. Topological sensitivity of energy cost functional for wave-based defect identification. Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 377-389. doi : 10.1016/j.crme.2010.07.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.016/

[1] R.V. Kohn; B.D. Lowe A variational method for parameter identification, Math. Mod. Num. Anal., Volume 22 (1988), pp. 293-315

[2] R. Kohn; A. McKenney Numerical implementation of a variational method for electrical impedance tomography, Inverse Problems, Volume 6 (1990), pp. 389-414

[3] I. Knowles Parameter identification for elliptic problems, J. Comp. Appl. Math., Volume 131 (2001), pp. 175-194

[4] G. Chavent; K. Kunisch; J.E. Roberts Primal–dual formulations for parameter estimation problems, Comput. Appl. Math., Volume 18 (1999), pp. 173-229

[5] M. Gockenbach; A.A. Khan An abstract framework for elliptic inverse problems: Part 2. An augmented Lagrangian approach, Math. Mech. Solids, Volume 14 (2009), pp. 517-539

[6] P. Ladevèze; D. Leguillon Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal., Volume 20 (1983), pp. 485-509

[7] P. Ladevèze; A. Chouaki Application of a posteriori error estimation for structural model updating, Inverse Problems, Volume 15 (1999), pp. 49-58

[8] P. Feissel; O. Allix Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case, Comput. Methods Appl. Mech. Engrg., Volume 196 (2006), pp. 1968-1983

[9] A. Deraemaeker; P. Ladevèze; Ph. Leconte Reduced bases for model updating in structural dynamics based on constitutive relation error, Comput. Methods Appl. Mech. Engrg., Volume 191 (2002), pp. 2427-2444

[10] G. Geymonat; S. Pagano Identification of mechanical properties by displacement field measurement: a variational approach, Meccanica, Volume 38 (2003), pp. 535-545

[11] S. Andrieux; A. Ben Abda Solving Cauchy problems by minimizing an energy-like functional, Inverse Problems, Volume 22 (2006), pp. 115-133

[12] F. Cakoni; D. Colton Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, 2006

[13] R. Potthast A survey on sampling and probe methods for inverse problems, Inverse Problems, Volume 22 (2006), p. R1-R47

[14] H. Ammari; H. Kang Reconstruction of Small Inhomogeneities from Boundary Measurements, Courant Lect. Notes Math., vol. 1846, Springer-Verlag, 2004

[15] D.J. Cedio-Fengya; S. Moskow; M. Vogelius Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, Volume 14 (1998), pp. 553-595

[16] B.B. Guzina; M. Bonnet Topological derivative for the inverse scattering of elastic waves, Quart. J. Mech. Appl. Math., Volume 57 (2004), pp. 161-179

[17] M. Bonnet; B.B. Guzina Sounding of finite solid bodies by way of topological derivative, Internat. J. Numer. Methods Engrg., Volume 61 (2004), pp. 2344-2373

[18] G.R. Feijóo A new method in inverse scattering based on the topological derivative, Inverse Problems, Volume 20 (2004), pp. 1819-1840

[19] M. Masmoudi; J. Pommier; B. Samet The topological asymptotic expansion for the Maxwell equations and some applications, Inverse Problems, Volume 21 (2005), pp. 547-564

[20] A. Ben Abda; M. Hassine; M. Jaoua; M. Masmoudi Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control Optim., Volume 48 (2009), pp. 2871-2900

[21] R. Snieder General theory of elastic wave scattering (R. Pike; P.C. Sabatier, eds.), Scattering: Scattering and Inverse Scattering in Pure and Applied Science, Academic Press, 2002, pp. 528-542

[22] P.A. Martin Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., Volume 64 (2003), pp. 297-308

[23] H. Ammari; H. Kang Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, vol. 162, Springer-Verlag, 2007

[24] B.B. Guzina; I. Chikichev From imaging to material identification: a generalized concept of topological sensitivity, J. Mech. Phys. Solids, Volume 55 (2007), pp. 245-279

[25] T. Mura Micromechanics of Defects in Solids, Martinus Nijhoff, 1982

[26] H. Ammari; A. Khelifi Electromagnetic scattering by small dielectric inhomogeneities, J. Maths. Pures Appl., Volume 82 (2003), pp. 749-842

[27] V. Maz'ya; S.A. Nazarov; B.A. Plamenevskii Asymptotic Theory of Elliptic Boundary Value Problems under a Singular Perturbation of the Domains, vols. 1 and 2, Birkhaüser, 2000

[28] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons, 1999

[29] B.B. Guzina; M. Bonnet Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics, Inverse Problems, Volume 22 (2006), pp. 1761-1785

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Crack identification by 3D time-domain elastic or acoustic topological sensitivity

Cédric Bellis; Marc Bonnet

C. R. Méca (2009)


A Fast Multipole Method formulation for 3D elastodynamics in the frequency domain

Stéphanie Chaillat; Marc Bonnet; Jean-François Semblat

C. R. Méca (2007)


Resolution of linear viscoelastic equations in the frequency domain using real Helmholtz boundary integral equations

Stéphanie Chaillat; Huy Duong Bui

C. R. Méca (2007)