[Une formulation inverse reposant sur les harmoniques hypersphériques pour la reconstruction 3D du mouvement du poumon]
Une méthode d'estimation de l'opérateur associé à la description 3D des mouvements volumiques du poumon humain est présentée dans cet article. Pour des écoulements entrants d'air et des déplacements volumiques connus, l'opérateur et, ensuite, les propriétés élastiques du poumon sont estimés en termes d'une fonction de Green. L'opérateur est calculé à l'aide d'une transformation en harmoniques hypersphériques, qui facilite la prise en compte de l'hétérogénéité de l'opérateur au moyen d'un nombre fini de coefficients fréquentiels. Les écoulements entrants d'air sont estimés au moyen de données spirométriques. Au moyen d'une méthode optique 3D de mesure d'écoulements, les mouvements volumiques des poumons gauche et droit, représentant l'anatomie et les mouvements locaux d'un sujet humain, ont été estimès à l'aide de données 4D-CT. Les résultats issus de la mise en œuvre de la méthode comprennent l'estimation de l'opérateur de déformation pour les poumons gauche et droit d'un sujet humain atteint de cancer du poumon. La validation de la méthode montre que le module de Young peut être estimé dans chaque voxel à 2% près.
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
Mot clés : Biomécanique, Problèmes inverses, Dynamique 3D du poumon, Harmoniques hypersphériques
Anand P. Santhanam 1, 2 ; Yugang Min 3 ; Sudhir P. Mudur 4 ; Abhinav Rastogi 1 ; Bari H. Ruddy 5 ; Amish Shah 2 ; Eduardo Divo 6 ; Alain Kassab 6 ; Jannick P. Rolland 7 ; Patrick Kupelian 8
@article{CRMECA_2010__338_7-8_461_0, author = {Anand P. Santhanam and Yugang Min and Sudhir P. Mudur and Abhinav Rastogi and Bari H. Ruddy and Amish Shah and Eduardo Divo and Alain Kassab and Jannick P. Rolland and Patrick Kupelian}, title = {An inverse hyper-spherical harmonics-based formulation for reconstructing {3D} volumetric lung deformations}, journal = {Comptes Rendus. M\'ecanique}, pages = {461--473}, publisher = {Elsevier}, volume = {338}, number = {7-8}, year = {2010}, doi = {10.1016/j.crme.2010.07.006}, language = {en}, }
TY - JOUR AU - Anand P. Santhanam AU - Yugang Min AU - Sudhir P. Mudur AU - Abhinav Rastogi AU - Bari H. Ruddy AU - Amish Shah AU - Eduardo Divo AU - Alain Kassab AU - Jannick P. Rolland AU - Patrick Kupelian TI - An inverse hyper-spherical harmonics-based formulation for reconstructing 3D volumetric lung deformations JO - Comptes Rendus. Mécanique PY - 2010 SP - 461 EP - 473 VL - 338 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2010.07.006 LA - en ID - CRMECA_2010__338_7-8_461_0 ER -
%0 Journal Article %A Anand P. Santhanam %A Yugang Min %A Sudhir P. Mudur %A Abhinav Rastogi %A Bari H. Ruddy %A Amish Shah %A Eduardo Divo %A Alain Kassab %A Jannick P. Rolland %A Patrick Kupelian %T An inverse hyper-spherical harmonics-based formulation for reconstructing 3D volumetric lung deformations %J Comptes Rendus. Mécanique %D 2010 %P 461-473 %V 338 %N 7-8 %I Elsevier %R 10.1016/j.crme.2010.07.006 %G en %F CRMECA_2010__338_7-8_461_0
Anand P. Santhanam; Yugang Min; Sudhir P. Mudur; Abhinav Rastogi; Bari H. Ruddy; Amish Shah; Eduardo Divo; Alain Kassab; Jannick P. Rolland; Patrick Kupelian. An inverse hyper-spherical harmonics-based formulation for reconstructing 3D volumetric lung deformations. Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 461-473. doi : 10.1016/j.crme.2010.07.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.006/
[1] Physics-Based Deformable Models, Kluwer Publishers, Philadelphia, PA, 1997
[2] Tracking moving organs in real time, Seminars on Radiation Oncology, Volume 14 (2004) no. 1, pp. 91-100
[3] Intrafractional tumor motion: lung and liver, Seminars on Radiation Oncology, Volume 14 (2004) no. 1, pp. 10-18
[4] Model of elasticity of the human lung, Journal of Applied Physiology, Volume 51 (1981), pp. 254-261
[5] On the preparation of lung strip for tissue mechanics measurement, Respiratory Physiology & Neurobiology, Volume 134 (2003) no. 3, pp. 255-262
[6] Poisson's ratio of lung parenchyma and parenchymal interaction with bronchi, Japan Journal of Physiology, Volume 36 (1986) no. 1, pp. 91-106
[7] Biomechanics, Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1993
[8] Airway-parenchymal interdependence after airway contraction in rat lung explants, Journal of Applied Physiology, Volume 85 (1998), pp. 231-237
[9] Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis, Americal Journal of Respiratory Critical Care Medicine, Volume 162 (2000) no. 4, pp. 1569-1576
[10] Magnetic resonance elastography of the lung: Initial feasibility, Proceedings of International Society of Magnetic Resonance in Medicine, Volume 11 (2003), p. 429
[11] Soft biological materials and their impact on cell function, Soft Matter, Volume 3 (2007), pp. 299-306
[12] Accuracy of finite element model-based multi-organ deformable image registration, Medical Physics, Volume 32 ( June 2005 ) no. 6, pp. 1647-1659
[13] R. Werner, J. Ehrhardt, R. Schmidt, H. Handels, Modeling respiratory lung motion a biophysical approach using finite element methods, in: Proc. SPIE, vol. 6916, San Diego, USA, February 2008, 69160N.
[14] Lung parenchymal tissue stiffness in fibrosis and cellular responses to substrate stiffness, Biophysical Journal, Volume 96 (2009) no. 3, p. 395a
[15] Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue, Journal of Applied Physiology, Volume 98 (2005), pp. 672-679
[16] Elastography – the movement begins, Physics for Medicine and Biology, Volume 45 (2000) no. 6, pp. 1409-1421
[17] Elasticity (G.M.L. Gladwell, ed.), Solid Mechanics and Its Applications, Kluwer Academic Publisher, Waterloo, Canada, 1992
[18] Characterization of regional pulmonary mechanics from serial MRI data, Medical Image Computing and Computer Aided Intervention, Lecture Notes on Computer Science, 2002, pp. 762-769
[19] Magnetic resonance elastography using gradient echo measurement of steady-state motion, Medical Physics, Volume 28 (2001) no. 8, p. 2001
[20] Recovery of nonrigid motion and structure, IEEE Transactions on Nuclear Science, Volume 13 (1991) no. 7, pp. 730-742
[21] Introduction to the Theory of Inverse Problems, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2000
[22] Elastically adaptive deformable models, IEEE Transactions on Pattern Recognition, Volume 24 (2002) no. 10, pp. 1310-1322
[23] Green's Functions and Boundary Value Problems, Mathematical Physics, Wiley Interscience, 1979
[24] An Introduction to Finite Element Methods, John Wiley and Sons, Raleigh, NC, 1991
[25] Real-time simulation of 4D lung tumor radiotherapy using a breathing model, Medical Image Computing and Computer Aided Intervention (2), 2008, pp. 710-717
[26] Evaluation of an iterative reconstruction method for quantitative elastography, Physics in Medicine and Biology, Volume 45 (2000), pp. 1521-1540
[27] On the relationship between radiance and irradiance: Determing the illumination from images of a convex Lambertian object, Journal of Optical Society of America (2001), pp. 2448-2459
[28] J.C. Adams, P.N. Swartztrauber, Spherepack 2.0: A model development facility, NCAR Technical note NCAR/TN-436-STR, 1997.
[29] Simulating 3D lung dynamics in a programmable graphics processing unit, IEEE Transactions on Information Technology and Biomedicine, Volume 11 (2006) no. 5, pp. 497-506
[30] Hyperspherical Harmonics and Generalized Sturmians, Progress in Theoretical Chemistry and Physics, Kluwer Academic Publishers, Boston, MA, 2000
[31] Hyper spherical coordinates in the quantum mechanical collinear reactive scattering, Chemical Physics Letters, Volume 74 (1980), p. 257
[32] Hyperspherical description of interference effects and resonances in collinear chemical reactions, Chemical Physics Letters, Volume 93 (1982), p. 174
[33] Theory of Ionization of Atoms by Electron Impact, Colorado Associated University Press, Boulder, CO, 1977 (Translated by D.G. Hummer, E. Aronson)
[34] Molecular orbital in momentum space, Proceedings of Royal Society A, Volume 286 (1965), p. 376
[35] Fourier Analysis on Groups, Interscience, New York, 1962
[36] A display framework for visualizing real-time lung tumor radiotherapy, Journal of Display Technology, Volume 4 (2008) no. 4, pp. 473-482
[37] Modeling and simulation of real-time 3D lung dynamics, IEEE Transactions on Information Technology and Biomedicine, Volume 12 (2008) no. 2, pp. 257-270
[38] FFTs on the rotation group, Journal of Fourier Analysis and Applications, Volume 14 (2008) no. 2, pp. 145-179
[39] Y. Min, H. Neelakkantan, B.H. Ruddy, S.L. Meeks, P. Kupelian, A.P. Santhanam, A GPU based framework for real-time lung radiotherapy monitoring applications, in: Computer Assisted Radiology and Surgery International Congress and Exhibition, 2010.
Cité par Sources :
Commentaires - Politique