Comptes Rendus
Unique determination of unknown boundaries in an elastic plate by one measurement
Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 450-460.

In this article we study two inverse problems for a thin elastic plate subjected to a given couple field applied at its boundary. One problem consists in determining an unknown portion of the exterior boundary of the plate subjected to homogeneous Neumann conditions, while the other problem concerns with the determination of a rigid inclusion inside the plate. In both cases, under the assumption that the plate is made by isotropic material, we prove uniqueness with one measurement.

Dans cet article, on considère deux problèmes inverses pour une plaque mince élastique soumise à une distribution donnée de moments sur une partie de son bord. Le premier problème consiste à déterminer une portion inconnue du bord, supposée libre d'efforts. Le second problème correspond à l'identification d'une inclusion rigide dans la plaque. Pour les deux problèmes, l'identifiabilité au moyen d'une seule mesure est prouvée, sous l'hypothèse d'un comportement isotrope du matériau constitutif de la plaque.

Published online:
DOI: 10.1016/j.crme.2010.07.011
Keywords: Inverse problems, Elastic plates, Unknown boundaries
Mots-clés : Problèmes inverses, Plaques élastiques, Frontières inconnues

Antonino Morassi 1; Edi Rosset 2

1 Dipartimento di Georisorse e Territorio, Università degli Studi di Udine, via Cotonificio 114, 33100 Udine, Italy
2 Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via Valerio 12/1, 34127 Trieste, Italy
@article{CRMECA_2010__338_7-8_450_0,
     author = {Antonino Morassi and Edi Rosset},
     title = {Unique determination of unknown boundaries in an elastic plate by one measurement},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {450--460},
     publisher = {Elsevier},
     volume = {338},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.011},
     language = {en},
}
TY  - JOUR
AU  - Antonino Morassi
AU  - Edi Rosset
TI  - Unique determination of unknown boundaries in an elastic plate by one measurement
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 450
EP  - 460
VL  - 338
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.011
LA  - en
ID  - CRMECA_2010__338_7-8_450_0
ER  - 
%0 Journal Article
%A Antonino Morassi
%A Edi Rosset
%T Unique determination of unknown boundaries in an elastic plate by one measurement
%J Comptes Rendus. Mécanique
%D 2010
%P 450-460
%V 338
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2010.07.011
%G en
%F CRMECA_2010__338_7-8_450_0
Antonino Morassi; Edi Rosset. Unique determination of unknown boundaries in an elastic plate by one measurement. Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 450-460. doi : 10.1016/j.crme.2010.07.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.011/

[1] M. Bonnet; A. Costantinescu Inverse problems in elasticity, Inverse Problems, Volume 21 (2005), p. R1-R50

[2] G. Fichera Existence theorems in elasticity, Handbuch der Physik, vol. VI, Springer-Verlag, Berlin, Heidelberg, New York, 1972, pp. 347-389

[3] E. Beretta; S. Vessella Stable determination of boundaries from Cauchy data, SIAM J. Math. Anal., Volume 30 (1998), pp. 220-232

[4] L. Rondi Optimal stability estimates for the determination of defects by electrostatic measurements, Inverse Problems, Volume 15 (1999), pp. 1193-1212

[5] G. Alessandrini; L. Rondi Optimal stability for the inverse problem of multiple cavities, J. Differential Equations, Volume 176 (2001), pp. 356-386

[6] G. Alessandrini; E. Beretta; E. Rosset; S. Vessella Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume XXIX (2000) no. 4, pp. 755-806

[7] K. Bryan; L.F. Caudill Reconstruction of an unknown boundary portion from Cauchy data in n dimensions, Inverse Problems, Volume 21 (2005), pp. 239-255

[8] V. Isakov Some inverse problems for the diffusion equation, Inverse Problems, Volume 15 (1999), pp. 3-10

[9] B. Canuto; E. Rosset; S. Vessella Quantitative estimates of unique continuation for parabolic equations and inverse initial–boundary value problems with unknown boundaries, Trans. Amer. Math. Soc., Volume 354 (2002), pp. 491-535

[10] B. Canuto; E. Rosset; S. Vessella A stability result in the localization of cavities in a thermic conducting medium, ESAIM:COCV, Volume 7 (2002), pp. 521-565

[11] M. Di Cristo; L. Rondi; S. Vessella Stability properties of an inverse parabolic problem with unknown boundaries, Ann. Mat. Pura Appl., Volume 185 (2006), pp. 223-255

[12] D.D. Ang; D.D. Trong; M. Yamamoto Unique continuation and identification of boundary of an elastic body, J. Inverse Ill-posed Probl. Ser., Volume 3 (1996), pp. 417-428

[13] D.D. Ang; D.D. Trong; M. Yamamoto Identification of cavities inside two-dimensional heterogeneous isotropic elastic bodies, J. Elasticity, Volume 56 (1999), pp. 199-212

[14] A. Morassi; E. Rosset Stable determination of cavities in elastic bodies, Inverse Problems, Volume 20 (2004), pp. 453-480

[15] A. Morassi; E. Rosset Uniqueness and stability in determining a rigid inclusion in an elastic body, Mem. Amer. Math. Soc., Volume 200 (2009) no. 938

[16] A. Morassi; E. Rosset; S. Vessella Unique determination of a cavity in an elastic plate by two boundary measurements, Inverse Prob. Imaging, Volume 1 (2007), pp. 481-506

[17] A. Morassi; E. Rosset; S. Vessella Size estimates for inclusions in an elastic plate by boundary measurements, Indiana Univ. Math. J., Volume 56 (2007), pp. 2325-2384

[18] R.A. Adams Sobolev Spaces, Academic Press, New York, 1975

[19] S. Agmon Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965

Cited by Sources:

Comments - Policy