We present here a simple and general non-parametrized entropy-fix for the computation of fluid flows involving sonic points in rarefaction waves. It enables to improve the stability and the accuracy of approximate Riemann solvers. It is also applied to MHD flows.
On présente dans cette note une correction entropique non paramétrique simple et générale pour la simulation d'écoulements de fluides comportant des points soniques en zone de détente. Celle-ci permet d'accroître la stabilité et la précision de solveurs de Riemann approchés. Cette correction est aussi appliquée aux équations de la MHD idéale.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Solveur de Riemann approché, Correction entropique
Philippe Helluy 1; Jean-Marc Hérard 2; Hélène Mathis 1; Siegfried Müller 3
@article{CRMECA_2010__338_9_493_0, author = {Philippe Helluy and Jean-Marc H\'erard and H\'el\`ene Mathis and Siegfried M\"uller}, title = {A simple parameter-free entropy correction for approximate {Riemann} solvers}, journal = {Comptes Rendus. M\'ecanique}, pages = {493--498}, publisher = {Elsevier}, volume = {338}, number = {9}, year = {2010}, doi = {10.1016/j.crme.2010.07.007}, language = {en}, }
TY - JOUR AU - Philippe Helluy AU - Jean-Marc Hérard AU - Hélène Mathis AU - Siegfried Müller TI - A simple parameter-free entropy correction for approximate Riemann solvers JO - Comptes Rendus. Mécanique PY - 2010 SP - 493 EP - 498 VL - 338 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2010.07.007 LA - en ID - CRMECA_2010__338_9_493_0 ER -
%0 Journal Article %A Philippe Helluy %A Jean-Marc Hérard %A Hélène Mathis %A Siegfried Müller %T A simple parameter-free entropy correction for approximate Riemann solvers %J Comptes Rendus. Mécanique %D 2010 %P 493-498 %V 338 %N 9 %I Elsevier %R 10.1016/j.crme.2010.07.007 %G en %F CRMECA_2010__338_9_493_0
Philippe Helluy; Jean-Marc Hérard; Hélène Mathis; Siegfried Müller. A simple parameter-free entropy correction for approximate Riemann solvers. Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 493-498. doi : 10.1016/j.crme.2010.07.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.007/
[1] A difference method for numerical calculation of discontinuous equations of hydrodynamics, Mat. Sb., Volume 47 (1959), pp. 217-300
[2] Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., Volume 43 (1981), pp. 357-372
[3] Calculation of interaction of non steady shock waves with obstacles, J. Comput. Math. Phys., Volume 1 (1961), pp. 267-279
[4] Some recent Finite Volume schemes to compute Euler equations with real gas EOS, Internat. J. Numer. Methods Fluids, Volume 39 (2002), pp. 1073-1138
[5] A self-adjusting grid for the computation of weak solutions of hyperbolic conservation laws, J. Comput. Phys., Volume 50 (1983), pp. 235-269
[6] A non-parametrized entropy correction for Roe's approximate Riemann solver, Numer. Math., Volume 73 (1996), pp. 169-208
[7] A rough Godunov scheme, CRAS Paris I, Volume 323 (1996), pp. 77-84
[8] A sequel to a rough Godunov scheme. Application to real gases, Comput. and Fluids, Volume 29 (2000), pp. 813-847
[9] A local time-stepping discontinuous Galerkin algorithm for the MHD system, ESAIM Proc., Volume 28 (2009), pp. 33-54
[10] A well-balanced approximate Riemann solver for variable cross-section compressible flows, 2009 http://www.aiaa.org (AIAA Paper 2009-3540)
[11] J.M. Hérard, M. Uhlmann, D. van der Velden, Numerical techniques for solving hybrid Euler–Lagrange models for particulate flows, EDF report H-I81-2009-3961-EN, 2009.
[12] Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., Volume 175 (2002) no. 2, pp. 645-673
[13] Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws, J. Comput. Phys., Volume 136 (1997) no. 2, pp. 446-466
[14] Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics, J. Plasma Phys., Volume 69 (2003) no. 3, pp. 253-276
[15] A multiwave approximate Riemann solver for ideal MHD based on relaxation. I. Theoretical framework, Numer. Math., Volume 108 (2007) no. 1, pp. 7-42
Cited by Sources:
Comments - Policy