Comptes Rendus
Comparing hinged and supported rectangular plates
Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 489-492.

We consider the Kirchhoff–Love model for the supported plate, that is, the fourth order differential equation Δ2u=f0 in a two-dimensional bounded domain Ω with the condition u|Ω0 and supplemented with natural boundary conditions. We show that the solution differs from the solution of the hinged plate problem, that is, the bi-Laplace equation with u=Δu=0 on the boundary, in the case of a rectangular domain.

On considère le modèle de Kirchhoff–Love pour des plaques minces simplement appuyées, c'est à dire l'équation aux dérivées partielles du quatrième ordre Δ2u=f0 sur une domaine borné Ω de dimension deux avec la condition u|Ω0 et supplementée avec les conditions naturelles. Nous démontrons que la solution de ce problème n'est pas identique à la solution d'une plaque charnière dans le cas où cette plaque est rectangulaire. Dans cet dernier cas, les conditions de bord sont u=Δu=0.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2010.08.002
Keywords: Analytical mechanics, Plates, Supported plate, Hinged plate, Unilateral boundary conditions, Variational inequality, Boundary obstacle
Mots-clés : Mécanique analytique, Plaques, Plaque simplement appuyé, Plaque charnière, Inégalité variationelle, Condition au bord unilatérale

Athanasios Stylianou 1; Guido Sweers 1

1 Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Cologne, Germany
@article{CRMECA_2010__338_9_489_0,
     author = {Athanasios Stylianou and Guido Sweers},
     title = {Comparing hinged and supported rectangular plates},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {489--492},
     publisher = {Elsevier},
     volume = {338},
     number = {9},
     year = {2010},
     doi = {10.1016/j.crme.2010.08.002},
     language = {en},
}
TY  - JOUR
AU  - Athanasios Stylianou
AU  - Guido Sweers
TI  - Comparing hinged and supported rectangular plates
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 489
EP  - 492
VL  - 338
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2010.08.002
LA  - en
ID  - CRMECA_2010__338_9_489_0
ER  - 
%0 Journal Article
%A Athanasios Stylianou
%A Guido Sweers
%T Comparing hinged and supported rectangular plates
%J Comptes Rendus. Mécanique
%D 2010
%P 489-492
%V 338
%N 9
%I Elsevier
%R 10.1016/j.crme.2010.08.002
%G en
%F CRMECA_2010__338_9_489_0
Athanasios Stylianou; Guido Sweers. Comparing hinged and supported rectangular plates. Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 489-492. doi : 10.1016/j.crme.2010.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.08.002/

[1] M.L. Williams, Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending, in: Proc. 1st U.S. Nar. Congr. Appl. Mech., 1951, pp. 325–329.

[2] V.A. Kondrat'ev Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč., Volume 16 (1967), pp. 209-292

[3] P. Grisvard Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées, vol. 22, Masson/Springer-Verlag, Paris/Berlin, 1992

[4] S.A. Nazarov, A. Stylianou, G. Sweers, Hinged and supported plates with corners, in preparation.

[5] I. Babuška Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitätstheorie. I, II, Czechoslovak Math. J., Volume 11 (1961) no. 86, pp. 76-105 (165–203)

[6] G. Sweers A survey on boundary conditions for the biharmonic, Complex Variables and Elliptic Equations, Volume 54 (2009) no. 2, pp. 79-93

[7] F. Gazzola; H.-Ch. Grunau; G. Sweers Polyharmonic Boundary Value Problems, Lecture Notes, vol. 1991, Springer, Berlin/Heidelberg, 2010

[8] D. Kinderlehrer; G. Stampacchia An Introduction to Variational Inequalities and Applications, Classics in Applied Mathematics, vol. 31, SIAM, 2000

[9] R.A. Adams; J.J.F. Fournier Sobolev Spaces, Pure and Applied Mathematics Series, vol. 140, Elsevier, 2003

[10] C. Davini Gaussian curvature and Babuška's paradox in the theory of plates, Rational Continua, Classical and New, Springer Italia, Milan, 2003, pp. 67-87

[11] J. Kadlec The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J., Volume 14 (1964) no. 89, pp. 386-393

[12] J. Serrin A symmetry problem in potential theory, Arch. Rational Mech. Anal., Volume 43 (1971), pp. 304-318

Cited by Sources:

Comments - Policy