We consider the Kirchhoff–Love model for the supported plate, that is, the fourth order differential equation in a two-dimensional bounded domain Ω with the condition and supplemented with natural boundary conditions. We show that the solution differs from the solution of the hinged plate problem, that is, the bi-Laplace equation with on the boundary, in the case of a rectangular domain.
On considère le modèle de Kirchhoff–Love pour des plaques minces simplement appuyées, c'est à dire l'équation aux dérivées partielles du quatrième ordre sur une domaine borné Ω de dimension deux avec la condition et supplementée avec les conditions naturelles. Nous démontrons que la solution de ce problème n'est pas identique à la solution d'une plaque charnière dans le cas où cette plaque est rectangulaire. Dans cet dernier cas, les conditions de bord sont .
Accepted:
Published online:
Mots-clés : Mécanique analytique, Plaques, Plaque simplement appuyé, Plaque charnière, Inégalité variationelle, Condition au bord unilatérale
Athanasios Stylianou 1; Guido Sweers 1
@article{CRMECA_2010__338_9_489_0, author = {Athanasios Stylianou and Guido Sweers}, title = {Comparing hinged and supported rectangular plates}, journal = {Comptes Rendus. M\'ecanique}, pages = {489--492}, publisher = {Elsevier}, volume = {338}, number = {9}, year = {2010}, doi = {10.1016/j.crme.2010.08.002}, language = {en}, }
Athanasios Stylianou; Guido Sweers. Comparing hinged and supported rectangular plates. Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 489-492. doi : 10.1016/j.crme.2010.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.08.002/
[1] M.L. Williams, Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending, in: Proc. 1st U.S. Nar. Congr. Appl. Mech., 1951, pp. 325–329.
[2] Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč., Volume 16 (1967), pp. 209-292
[3] Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées, vol. 22, Masson/Springer-Verlag, Paris/Berlin, 1992
[4] S.A. Nazarov, A. Stylianou, G. Sweers, Hinged and supported plates with corners, in preparation.
[5] Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitätstheorie. I, II, Czechoslovak Math. J., Volume 11 (1961) no. 86, pp. 76-105 (165–203)
[6] A survey on boundary conditions for the biharmonic, Complex Variables and Elliptic Equations, Volume 54 (2009) no. 2, pp. 79-93
[7] Polyharmonic Boundary Value Problems, Lecture Notes, vol. 1991, Springer, Berlin/Heidelberg, 2010
[8] An Introduction to Variational Inequalities and Applications, Classics in Applied Mathematics, vol. 31, SIAM, 2000
[9] Sobolev Spaces, Pure and Applied Mathematics Series, vol. 140, Elsevier, 2003
[10] Gaussian curvature and Babuška's paradox in the theory of plates, Rational Continua, Classical and New, Springer Italia, Milan, 2003, pp. 67-87
[11] The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J., Volume 14 (1964) no. 89, pp. 386-393
[12] A symmetry problem in potential theory, Arch. Rational Mech. Anal., Volume 43 (1971), pp. 304-318
Cited by Sources:
Comments - Policy