[Comparaison d'une plaque rectangulaire simplement appuyée et d'une plaque charnière]
On considère le modèle de Kirchhoff–Love pour des plaques minces simplement appuyées, c'est à dire l'équation aux dérivées partielles du quatrième ordre
We consider the Kirchhoff–Love model for the supported plate, that is, the fourth order differential equation
Accepté le :
Publié le :
Mots-clés : Mécanique analytique, Plaques, Plaque simplement appuyé, Plaque charnière, Inégalité variationelle, Condition au bord unilatérale
Athanasios Stylianou 1 ; Guido Sweers 1
@article{CRMECA_2010__338_9_489_0, author = {Athanasios Stylianou and Guido Sweers}, title = {Comparing hinged and supported rectangular plates}, journal = {Comptes Rendus. M\'ecanique}, pages = {489--492}, publisher = {Elsevier}, volume = {338}, number = {9}, year = {2010}, doi = {10.1016/j.crme.2010.08.002}, language = {en}, }
Athanasios Stylianou; Guido Sweers. Comparing hinged and supported rectangular plates. Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 489-492. doi : 10.1016/j.crme.2010.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.08.002/
[1] M.L. Williams, Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending, in: Proc. 1st U.S. Nar. Congr. Appl. Mech., 1951, pp. 325–329.
[2] Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč., Volume 16 (1967), pp. 209-292
[3] Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées, vol. 22, Masson/Springer-Verlag, Paris/Berlin, 1992
[4] S.A. Nazarov, A. Stylianou, G. Sweers, Hinged and supported plates with corners, in preparation.
[5] Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitätstheorie. I, II, Czechoslovak Math. J., Volume 11 (1961) no. 86, pp. 76-105 (165–203)
[6] A survey on boundary conditions for the biharmonic, Complex Variables and Elliptic Equations, Volume 54 (2009) no. 2, pp. 79-93
[7] Polyharmonic Boundary Value Problems, Lecture Notes, vol. 1991, Springer, Berlin/Heidelberg, 2010
[8] An Introduction to Variational Inequalities and Applications, Classics in Applied Mathematics, vol. 31, SIAM, 2000
[9] Sobolev Spaces, Pure and Applied Mathematics Series, vol. 140, Elsevier, 2003
[10] Gaussian curvature and Babuška's paradox in the theory of plates, Rational Continua, Classical and New, Springer Italia, Milan, 2003, pp. 67-87
[11] The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J., Volume 14 (1964) no. 89, pp. 386-393
[12] A symmetry problem in potential theory, Arch. Rational Mech. Anal., Volume 43 (1971), pp. 304-318
- Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems, Computers Mathematics with Applications, Volume 72 (2016) no. 1, pp. 233-247 | DOI:10.1016/j.camwa.2016.05.001 | Zbl:1443.74221
- On sign preservation for clotheslines, curtain rods, elastic membranes and thin plates, Jahresbericht der Deutschen Mathematiker-Vereinigung (DMV), Volume 118 (2016) no. 4, pp. 275-320 | DOI:10.1365/s13291-016-0147-0 | Zbl:1358.35025
- Approximation of thin three-dimensional plates with smooth lateral surface by polygonal plates, Journal of Mathematical Sciences (New York), Volume 210 (2015) no. 4, pp. 399-428 | DOI:10.1007/s10958-015-2573-4 | Zbl:1338.74080
- Hinged and supported plates with corners, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 63 (2012) no. 5, pp. 929-960 | DOI:10.1007/s00033-012-0195-y | Zbl:1325.74093
- Paradoxes in problems on bending of polygonal plates with a hinged/supported edge, Doklady Physics, Volume 56 (2011) no. 8, p. 439 | DOI:10.1134/s1028335811080027
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique