[Modélisation des transferts de chaleur en configuration de Rayleigh–Bénard dans les nanofluides]
Le transfert de chaleur en configuration de Rayleigh–Bénard est analysé pour trois nanofluides différents. Au lieu de recourir aux relations que l'on trouve habituellement dans la littérature pour la capacité calorifique et le coefficient d'expansion thermique, nous avons utilisé deux relations en adéquation avec les lois de la thermodynamique. On étudie l'influence de la concentration en nanoparticules sur le transfert conductif et convectif. On a montré que la naissance de la convection est retardée par l'ajout de nanoparticules. Contrairement à ce qui a été obtenu par plusieurs auteurs, nous avons montré à partir de simulations numériques directes que la présence de nanoparticules dans un fluide peut réduire le transfert de chaleur au lieu de l'augmenter.
Heat transfer in Rayleigh–Bénard convection is investigated for three types of nanofluid. Instead of using the expressions commonly found in the literature for specific heat capacity and thermal expansion coefficient, we used two relations that are in agreement with the laws of thermodynamics. The influence of nanoparticles on conductive and convective heat transfer is studied. It is shown that adding nanoparticles in a fluid delays the onset of convection. Contrary to what is argued by many authors, we prove by direct numerical simulations that the use of nanofluids can reduce heat transfer instead of increasing it.
Accepté le :
Publié le :
Mots-clés : Transferts thermiques, Convection, Nanofluide, Rayleigh–Bénard
Bilal Elhajjar 1, 2 ; Glades Bachir 1, 2, 3 ; Abdelkader Mojtabi 1, 2 ; Chakib Fakih 3 ; Marie Catherine Charrier-Mojtabi 4
@article{CRMECA_2010__338_6_350_0, author = {Bilal Elhajjar and Glades Bachir and Abdelkader Mojtabi and Chakib Fakih and Marie Catherine Charrier-Mojtabi}, title = {Modeling of {Rayleigh{\textendash}B\'enard} natural convection heat transfer in nanofluids}, journal = {Comptes Rendus. M\'ecanique}, pages = {350--354}, publisher = {Elsevier}, volume = {338}, number = {6}, year = {2010}, doi = {10.1016/j.crme.2010.07.008}, language = {en}, }
TY - JOUR AU - Bilal Elhajjar AU - Glades Bachir AU - Abdelkader Mojtabi AU - Chakib Fakih AU - Marie Catherine Charrier-Mojtabi TI - Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids JO - Comptes Rendus. Mécanique PY - 2010 SP - 350 EP - 354 VL - 338 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2010.07.008 LA - en ID - CRMECA_2010__338_6_350_0 ER -
%0 Journal Article %A Bilal Elhajjar %A Glades Bachir %A Abdelkader Mojtabi %A Chakib Fakih %A Marie Catherine Charrier-Mojtabi %T Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids %J Comptes Rendus. Mécanique %D 2010 %P 350-354 %V 338 %N 6 %I Elsevier %R 10.1016/j.crme.2010.07.008 %G en %F CRMECA_2010__338_6_350_0
Bilal Elhajjar; Glades Bachir; Abdelkader Mojtabi; Chakib Fakih; Marie Catherine Charrier-Mojtabi. Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids. Comptes Rendus. Mécanique, Volume 338 (2010) no. 6, pp. 350-354. doi : 10.1016/j.crme.2010.07.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.008/
[1] Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., Volume 46 (2007), pp. 1-19
[2] Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, Volume 46 (2003), pp. 3639-3653
[3] Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid, Int. J. Heat Fluid Flow, Volume 30 (2009), pp. 669-678
[4] Natural convection of nanofluids, Heat Mass Transfer, Volume 39 (2003), pp. 775-784
[5] Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, Volume 16 (2004), pp. 2395-2401
[6] Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Int. J. Heat Mass Transfer, Volume 50 (2007), pp. 4003-4010
[7] Numerical simulation of natural convection of nanofluids in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Transfer, Volume 51 (2008), pp. 4506-4516
[8] Natural convection of nanofluids in a cavity including the Soret effect, Comput. Therm. Sci. Int. J., Volume 1 (2009), pp. 425-440
[9] A note on heat transfer modeling of Newtonian nanofluids in laminar free convection, Int. J. Therm. Sci., Volume 46 (2007), pp. 739-744
[10] Thermal conductivity of heterogeneous two-component systems, I and EC Fundamentals, Volume 1 (1962), pp. 187-191
[11] The viscosity of concentrated suspensions and solution, J. Chem. Phys., Volume 20 (1952), p. 571
[12] Separation of a binary fluid mixture in a porous horizontal cavity, Phys. Rev. E, Volume 77 (2008) (026310-1–6)
[13] Bistable heat transfer in nanofluid, Phys. Rev. Lett., Volume 102 (2009) (104503-1–4)
[14] Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer, Phys. Fluids, Volume 19 (2007) (124104-1–14)
- Impact of colloidal properties of cupric oxide-water nanofluid on cooling of miniaturized systems: a numerical and experimental investigation, Journal of Thermal Analysis and Calorimetry, Volume 149 (2024) no. 11, p. 5673 | DOI:10.1007/s10973-024-13097-5
- Effects of gravity and anisotropy on the convective instability in a nanofluid porous medium, Numerical Heat Transfer, Part A: Applications (2024), p. 1 | DOI:10.1080/10407782.2024.2365424
- Onset of synchronous and asynchronous convection in modulated nanofluid filled porous media, SSRN Electronic Journal (2024) | DOI:10.2139/ssrn.4885336
- , LOW RADIOACTIVITY TECHNIQUES 2022 (LRT 2022): Proceedings of the 8th International Workshop on Low Radioactivity Techniques, Volume 2908 (2023), p. 020024 | DOI:10.1063/5.0155368
- Thermal Convective Instabilities and Chaos in a Rotating Hybrid Nanofluid Layer with Cattaneo–Christov Heat Flux Model, Complexity, Volume 2022 (2022) no. 1 | DOI:10.1155/2022/9084394
- Impact of volume fraction and fluid layer thickness on heat transfer effectiveness of water‐based nanofluids, Heat Transfer, Volume 51 (2022) no. 3, p. 2628 | DOI:10.1002/htj.22417
- Thermal instability and chaos in a hybrid nanofluid flow, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, Volume 32 (2022) no. 7, p. 21 (Id/No 2250102) | DOI:10.1142/s0218127422501024 | Zbl:1496.76052
- Comparative studies on air, water and nanofluids based Rayleigh–Benard natural convection using lattice Boltzmann method: CFD and exergy analysis, Journal of Thermal Analysis and Calorimetry, Volume 147 (2022) no. 2, p. 1487 | DOI:10.1007/s10973-020-10496-2
- Chaotic Convection in a Horizontal Cavity Filled with (Alumina–copper)/Water Hybrid Nanofluid Heated from below in Presence of Magnetic Field, Brazilian Journal of Physics, Volume 51 (2021) no. 4, p. 1079 | DOI:10.1007/s13538-021-00929-0
- Thermovibrational instability in a nanofluid porous medium, European Journal of Mechanics. B. Fluids, Volume 90 (2021), pp. 64-72 | DOI:10.1016/j.euromechflu.2021.08.002 | Zbl:1487.76037
- Effect of non-inertial acceleration on Brinkman-Bénard convection in water-copper nanoliquid-saturated porous enclosures, International Journal of Applied and Computational Mathematics, Volume 7 (2021) no. 3, p. 24 (Id/No 108) | DOI:10.1007/s40819-021-01045-y | Zbl:1491.76069
- EMD analysis on the impact of temperature, volume fraction and molecular weight on the thermal conductivity of water-based nanofluids, Journal of Thermal Analysis and Calorimetry, Volume 146 (2021) no. 4, p. 1525 | DOI:10.1007/s10973-020-10134-x
- A nanofluids and nanocoatings used for solar energy harvesting and heat transfer applications: A retrospective review analysis, Materials Today: Proceedings, Volume 37 (2021), p. 823 | DOI:10.1016/j.matpr.2020.05.833
- Onset of synchronous and asynchronous convection in modulated nanofluid filled porous media, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 101 (2021) no. 5, p. 13 (Id/No e201900317) | DOI:10.1002/zamm.201900317 | Zbl:7813053
- Appraising conjugate heat transfer, heatlines visualization and entropy generation of Ag-MgO/H2O hybrid nanofluid in a partitioned medium, International Journal of Numerical Methods for Heat Fluid Flow, Volume 30 (2020) no. 10, p. 4529 | DOI:10.1108/hff-10-2019-0749
- Regulation of heat transfer in Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations, Journal of Thermal Analysis and Calorimetry, Volume 142 (2020) no. 4, p. 1579 | DOI:10.1007/s10973-020-09325-3
- Study of steady, two-dimensional, unicellular convection in a water-copper nanoliquid-saturated porous enclosure using single-phase model, Applied mathematics and scientific computing. International conference on advances in mathematical sciences, ICAMS, Vellore, India, December 1–3, 2017. Volume II. Selected papers, Cham: Birkhäuser, 2019, pp. 147-155 | DOI:10.1007/978-3-030-01123-9_16 | Zbl:1445.80002
- Comparison of the effects of three types of time-periodic body force on linear and non-linear stability of convection in nanoliquids, European Journal of Mechanics. B. Fluids, Volume 77 (2019), pp. 221-229 | DOI:10.1016/j.euromechflu.2019.05.004 | Zbl:1475.76041
- Optimum fluid layer thickness for heat transfer effectiveness using water‐based nanofluids—A numerical estimation, Heat Transfer—Asian Research, Volume 48 (2019) no. 8, p. 3945 | DOI:10.1002/htj.21576
- Unsteady Finite Amplitude Convection of Water–Copper Nanoliquid in High-Porosity Enclosures, Journal of Heat Transfer, Volume 141 (2019) no. 6 | DOI:10.1115/1.4043165
- Theoretical study of nanofluids behavior at critical Rayleigh numbers, Journal of Thermal Analysis and Calorimetry, Volume 135 (2019) no. 6, p. 3499 | DOI:10.1007/s10973-018-7582-3
- Effect of trigonometric sine, square and triangular wave-type time-periodic gravity-aligned oscillations on Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids, Meccanica, Volume 54 (2019) no. 3, p. 451 | DOI:10.1007/s11012-019-00957-w
- Effect of internal heat generation/absorption on Rayleigh-Bénard convection in water well-dispersed with nanoparticles or carbon nanotubes, International Journal of Heat and Mass Transfer, Volume 127 (2018), p. 1031 | DOI:10.1016/j.ijheatmasstransfer.2018.06.122
- A theoretical study of enhanced heat transfer in nanoliquids with volumetric heat source, Journal of Applied Mathematics and Computing, Volume 57 (2018) no. 1-2, pp. 703-728 | DOI:10.1007/s12190-017-1129-9 | Zbl:1394.35368
- Heat transfer augmentation in concentric elliptic annular by ethylene glycol based nanofluids, International Communications in Heat and Mass Transfer, Volume 82 (2017), p. 29 | DOI:10.1016/j.icheatmasstransfer.2017.02.008
- Numerical simulation of Rayleigh-Bénard convection of nanofluids in rectangular cavities, Journal of Mechanical Science and Technology, Volume 31 (2017) no. 8, p. 4043 | DOI:10.1007/s12206-017-0752-6
- Natural convective heat transfer characteristics of Rayleigh-Benard convection of Al2O3-water nanofluids, Journal of Thermal Science and Technology, Volume 12 (2017) no. 2, p. JTST0032 | DOI:10.1299/jtst.2017jtst0032
- Rayleigh–Benard convection in water-based alumina nanofluid: A numerical study, Numerical Heat Transfer, Part A: Applications, Volume 71 (2017) no. 2, p. 202 | DOI:10.1080/10407782.2016.1257302
- Effect of thermophoresis on natural convection in a Rayleigh–Benard cell filled with a nanofluid, International Journal of Heat and Mass Transfer, Volume 81 (2015), p. 142 | DOI:10.1016/j.ijheatmasstransfer.2014.10.001
- Parametric solution of the Rayleigh-Benard convection model by using the PGD, International Journal of Numerical Methods for Heat Fluid Flow, Volume 25 (2015) no. 6, pp. 1252-1281 | DOI:10.1108/hff-06-2014-0196 | Zbl:1356.76309
- Double diffusive convection and thermodiffusion of fullerene–toluene nanofluid in a porous cavity, The Canadian Journal of Chemical Engineering, Volume 91 (2013) no. 12, p. 1918 | DOI:10.1002/cjce.21801
- Computer simulations of natural convection of single phase nanofluids in simple enclosures: A critical review, Applied Thermal Engineering, Volume 36 (2012), p. 1 | DOI:10.1016/j.applthermaleng.2011.11.065
- Tunable heat transfer with smart nanofluids, Physical Review E, Volume 85 (2012) no. 6 | DOI:10.1103/physreve.85.066321
- A review on natural convective heat transfer of nanofluids, Renewable and Sustainable Energy Reviews, Volume 16 (2012) no. 7, p. 5363 | DOI:10.1016/j.rser.2012.04.003
Cité par 34 documents. Sources : Crossref, zbMATH
Commentaires - Politique