[Modélisation des transferts de chaleur en configuration de Rayleigh–Bénard dans les nanofluides]
Le transfert de chaleur en configuration de Rayleigh–Bénard est analysé pour trois nanofluides différents. Au lieu de recourir aux relations que l'on trouve habituellement dans la littérature pour la capacité calorifique et le coefficient d'expansion thermique, nous avons utilisé deux relations en adéquation avec les lois de la thermodynamique. On étudie l'influence de la concentration en nanoparticules sur le transfert conductif et convectif. On a montré que la naissance de la convection est retardée par l'ajout de nanoparticules. Contrairement à ce qui a été obtenu par plusieurs auteurs, nous avons montré à partir de simulations numériques directes que la présence de nanoparticules dans un fluide peut réduire le transfert de chaleur au lieu de l'augmenter.
Heat transfer in Rayleigh–Bénard convection is investigated for three types of nanofluid. Instead of using the expressions commonly found in the literature for specific heat capacity and thermal expansion coefficient, we used two relations that are in agreement with the laws of thermodynamics. The influence of nanoparticles on conductive and convective heat transfer is studied. It is shown that adding nanoparticles in a fluid delays the onset of convection. Contrary to what is argued by many authors, we prove by direct numerical simulations that the use of nanofluids can reduce heat transfer instead of increasing it.
Accepté le :
Publié le :
Mot clés : Transferts thermiques, Convection, Nanofluide, Rayleigh–Bénard
Bilal Elhajjar 1, 2 ; Glades Bachir 1, 2, 3 ; Abdelkader Mojtabi 1, 2 ; Chakib Fakih 3 ; Marie Catherine Charrier-Mojtabi 4
@article{CRMECA_2010__338_6_350_0, author = {Bilal Elhajjar and Glades Bachir and Abdelkader Mojtabi and Chakib Fakih and Marie Catherine Charrier-Mojtabi}, title = {Modeling of {Rayleigh{\textendash}B\'enard} natural convection heat transfer in nanofluids}, journal = {Comptes Rendus. M\'ecanique}, pages = {350--354}, publisher = {Elsevier}, volume = {338}, number = {6}, year = {2010}, doi = {10.1016/j.crme.2010.07.008}, language = {en}, }
TY - JOUR AU - Bilal Elhajjar AU - Glades Bachir AU - Abdelkader Mojtabi AU - Chakib Fakih AU - Marie Catherine Charrier-Mojtabi TI - Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids JO - Comptes Rendus. Mécanique PY - 2010 SP - 350 EP - 354 VL - 338 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2010.07.008 LA - en ID - CRMECA_2010__338_6_350_0 ER -
%0 Journal Article %A Bilal Elhajjar %A Glades Bachir %A Abdelkader Mojtabi %A Chakib Fakih %A Marie Catherine Charrier-Mojtabi %T Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids %J Comptes Rendus. Mécanique %D 2010 %P 350-354 %V 338 %N 6 %I Elsevier %R 10.1016/j.crme.2010.07.008 %G en %F CRMECA_2010__338_6_350_0
Bilal Elhajjar; Glades Bachir; Abdelkader Mojtabi; Chakib Fakih; Marie Catherine Charrier-Mojtabi. Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids. Comptes Rendus. Mécanique, Volume 338 (2010) no. 6, pp. 350-354. doi : 10.1016/j.crme.2010.07.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.008/
[1] Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., Volume 46 (2007), pp. 1-19
[2] Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, Volume 46 (2003), pp. 3639-3653
[3] Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid, Int. J. Heat Fluid Flow, Volume 30 (2009), pp. 669-678
[4] Natural convection of nanofluids, Heat Mass Transfer, Volume 39 (2003), pp. 775-784
[5] Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, Volume 16 (2004), pp. 2395-2401
[6] Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Int. J. Heat Mass Transfer, Volume 50 (2007), pp. 4003-4010
[7] Numerical simulation of natural convection of nanofluids in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Transfer, Volume 51 (2008), pp. 4506-4516
[8] Natural convection of nanofluids in a cavity including the Soret effect, Comput. Therm. Sci. Int. J., Volume 1 (2009), pp. 425-440
[9] A note on heat transfer modeling of Newtonian nanofluids in laminar free convection, Int. J. Therm. Sci., Volume 46 (2007), pp. 739-744
[10] Thermal conductivity of heterogeneous two-component systems, I and EC Fundamentals, Volume 1 (1962), pp. 187-191
[11] The viscosity of concentrated suspensions and solution, J. Chem. Phys., Volume 20 (1952), p. 571
[12] Separation of a binary fluid mixture in a porous horizontal cavity, Phys. Rev. E, Volume 77 (2008) (026310-1–6)
[13] Bistable heat transfer in nanofluid, Phys. Rev. Lett., Volume 102 (2009) (104503-1–4)
[14] Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer, Phys. Fluids, Volume 19 (2007) (124104-1–14)
Cité par Sources :
Commentaires - Politique