We consider the problem of selective imaging extended reflectors in cluttered media. We propose a random travel time model for simulating the array response matrix in clutter and we compare it with the full wave solution. Our simplified model captures very well the full wave random medium behavior as this is illustrated by our numerical results. The algorithm for selective array imaging uses coherent interferometry on a filtered version of the data. The filter, which is based on the singular value decomposition of the response matrix, enhances the signal reflected by the edges of the reflector. We illustrate the performance of the imaging algorithm with numerical simulations in the regime of ultrasonic non-destructive testing in concrete.
Liliana Borcea 1 ; George Papanicolaou 2 ; Chrysoula Tsogka 3
@article{CRMECA_2010__338_7-8_390_0, author = {Liliana Borcea and George Papanicolaou and Chrysoula Tsogka}, title = {Subspace projection filters for imaging in random media}, journal = {Comptes Rendus. M\'ecanique}, pages = {390--401}, publisher = {Elsevier}, volume = {338}, number = {7-8}, year = {2010}, doi = {10.1016/j.crme.2010.07.013}, language = {en}, }
TY - JOUR AU - Liliana Borcea AU - George Papanicolaou AU - Chrysoula Tsogka TI - Subspace projection filters for imaging in random media JO - Comptes Rendus. Mécanique PY - 2010 SP - 390 EP - 401 VL - 338 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2010.07.013 LA - en ID - CRMECA_2010__338_7-8_390_0 ER -
Liliana Borcea; George Papanicolaou; Chrysoula Tsogka. Subspace projection filters for imaging in random media. Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 390-401. doi : 10.1016/j.crme.2010.07.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.013/
[1] Time reversal mirrors, J. Phys. D, Volume 26 (1993), pp. 1330-1350
[2] Time reversed acoustics, Phys. Today ( March 1997 ), pp. 33-40
[3] Time-reversed acoustics, Sci. Amer. ( November 1999 ), pp. 91-97
[4] Time-reversed acoustics, Rep. Prog. Phys., Volume 63 (2000), pp. 1933-1994
[5] Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media, Wave Motion, Volume 20 (1994), pp. 151-163
[6] A. Gustavsson, P.O. Frölind, H. Hellsten, T. Jonsson, B. Larsson, G. Stenström, L.M.H. Ulander, Development and operation of the FOA CARABAS HF/VHF-SAR system, in: Proc. 4th Int. Workshop on Radar Polarimetry, Nantes, France, July 1998.
[7] L.M.H. Ulander, H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging, in: Conf. Proc. SPIE 13th Annual Int. Symp. on Aerosense, Orlando, FL, April 1999.
[8] Wide-area detection of land mines and unexploded ordnance, Inverse Problems, Volume 18 (2002), pp. 575-609
[9] Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, Springer, New York, 2001
[10] Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting, Blackwell Scientific Publications, Palo Alto, CA, 1985
[11] Edge illumination and imaging of extended reflectors, SIAM J. Imaging Sci., Volume 1 (2008), pp. 75-114
[12] Interferometric array imaging in clutter, Inverse Problems, Volume 21 (2005) no. 4, pp. 1419-1460
[13] Coherent interferometric imaging, Geophysics, Volume 71 (2006) no. 4, p. SI165-SI175
[14] Adaptive interferometric imaging in clutter and optimal illumination, Inverse Problems, Volume 22 (2006) no. 4, pp. 1405-1436
[15] Asymptotics for the space–time Wigner transform with applications to imaging (P.H. Baxendale; S.V. Lototsky, eds.), Stochastic Differential Equations: Theory and Applications, Volume in Honor of Professor Boris L. Rozovskii, Interdisciplinary Mathematical Sciences, vol. 2, World Scientific, 2007, pp. 91-112
[16] Principles of Optics, Academic Press, New York, 1970
[17] Random Field Models in Earth Sciences, Dover, New York, 2005
[18] Wavelet based estimation of Kolmogorov turbulence (P. Doukhan; G. Oppenmeim; M.S. Taqqu, eds.), Long-Range Dependence: Theory and Applications, Birkhäuser, 2003, pp. 473-505
[19] Optimal illumination and waveform design for imaging in random media, J. Acoust. Soc. Am., Volume 122 (2007), pp. 3507-3519
[20] Wavefield inversion in nondestructive testing (I.M. Pinto; V. Galdi; L.B. Felsen, eds.), Electromagnetics in a Complex World — Challenges and Perspectives, Springer, 2003, pp. 277-285
[21] Recent applications and advances of numerical modeling and wavefield inversion in nondestructive testing, Adv. Radio Sci., Volume 3 (2005), pp. 167-174
[22] An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1053-1084
[23] Transport equations for elastic and other waves in random media, Wave Motion, Volume 24 (1996), pp. 327-370
[24] Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion, Rev. Modern Phys., Volume 71 (1999), pp. 313-371
[25] Limits of time-reversal focusing through multiple scattering: Long range correlation, J. Acoust. Soc. Am., Volume 107 (2000), pp. 2987-2998
[26] Filtering deterministic layer effects in imaging, SIAM Multiscale Model. Simul., Volume 7 (2009), pp. 1267-1301
[27] Filtering random layer effects in imaging, SIAM Multiscale Model. Simul., Volume 8 (2010), pp. 751-781
[28] R. Alonso, L. Borcea, G. Papanicolaou, C. Tsogka, Detection and imaging in strongly backscattering randomly layered media, 2010, Preprint.
[29] Optimal waveform design for array imaging, Inverse Problems, Volume 23 (2007), pp. 1973-2020
[30] Prolate spheroidal wave functions, Fourier analysis and uncertainty, II, Bell Systems Tech. J., Volume 40 (1961), pp. 65-84
[31] Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, Bell Systems Tech. J., Volume 40 (1961), pp. 43-64
Cité par Sources :
Commentaires - Politique