Comptes Rendus
Subspace projection filters for imaging in random media
Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 390-401.

We consider the problem of selective imaging extended reflectors in cluttered media. We propose a random travel time model for simulating the array response matrix in clutter and we compare it with the full wave solution. Our simplified model captures very well the full wave random medium behavior as this is illustrated by our numerical results. The algorithm for selective array imaging uses coherent interferometry on a filtered version of the data. The filter, which is based on the singular value decomposition of the response matrix, enhances the signal reflected by the edges of the reflector. We illustrate the performance of the imaging algorithm with numerical simulations in the regime of ultrasonic non-destructive testing in concrete.

Published online:
DOI: 10.1016/j.crme.2010.07.013
Mots-clés : Signal processing, Array imaging, Random media, Migration, Coherent interferometry

Liliana Borcea 1; George Papanicolaou 2; Chrysoula Tsogka 3

1 Computational and Applied Mathematics, Rice University, MS 134, Houston, TX 77005-1892, USA
2 Mathematics, Stanford University, Stanford CA 94305, USA
3 Applied Mathematics, University of Crete and IACM/FORTH, GR-71409 Heraklion, Greece
@article{CRMECA_2010__338_7-8_390_0,
     author = {Liliana Borcea and George Papanicolaou and Chrysoula Tsogka},
     title = {Subspace projection filters for imaging in random media},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {390--401},
     publisher = {Elsevier},
     volume = {338},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.013},
     language = {en},
}
TY  - JOUR
AU  - Liliana Borcea
AU  - George Papanicolaou
AU  - Chrysoula Tsogka
TI  - Subspace projection filters for imaging in random media
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 390
EP  - 401
VL  - 338
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.013
LA  - en
ID  - CRMECA_2010__338_7-8_390_0
ER  - 
%0 Journal Article
%A Liliana Borcea
%A George Papanicolaou
%A Chrysoula Tsogka
%T Subspace projection filters for imaging in random media
%J Comptes Rendus. Mécanique
%D 2010
%P 390-401
%V 338
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2010.07.013
%G en
%F CRMECA_2010__338_7-8_390_0
Liliana Borcea; George Papanicolaou; Chrysoula Tsogka. Subspace projection filters for imaging in random media. Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 390-401. doi : 10.1016/j.crme.2010.07.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.013/

[1] M. Fink Time reversal mirrors, J. Phys. D, Volume 26 (1993), pp. 1330-1350

[2] M. Fink Time reversed acoustics, Phys. Today ( March 1997 ), pp. 33-40

[3] M. Fink Time-reversed acoustics, Sci. Amer. ( November 1999 ), pp. 91-97

[4] M. Fink; D. Cassereau; A. Derode; C. Prada; P. Roux; M. Tanter Time-reversed acoustics, Rep. Prog. Phys., Volume 63 (2000), pp. 1933-1994

[5] C. Prada; M. Fink Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media, Wave Motion, Volume 20 (1994), pp. 151-163

[6] A. Gustavsson, P.O. Frölind, H. Hellsten, T. Jonsson, B. Larsson, G. Stenström, L.M.H. Ulander, Development and operation of the FOA CARABAS HF/VHF-SAR system, in: Proc. 4th Int. Workshop on Radar Polarimetry, Nantes, France, July 1998.

[7] L.M.H. Ulander, H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging, in: Conf. Proc. SPIE 13th Annual Int. Symp. on Aerosense, Orlando, FL, April 1999.

[8] L. Carin; N. Geng; M. McClure; Y. Dong; Z. Liu; J. He; J. Sichina; M. Ressler; L. Nguyen; A. Sullivan Wide-area detection of land mines and unexploded ordnance, Inverse Problems, Volume 18 (2002), pp. 575-609

[9] N. Bleistein; J.K. Cohen; J.W. Stockwell Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, Springer, New York, 2001

[10] J.F. Claerbout Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting, Blackwell Scientific Publications, Palo Alto, CA, 1985

[11] Liliana Borcea; George Papanicolaou; Fernando Guevara Vasquez Edge illumination and imaging of extended reflectors, SIAM J. Imaging Sci., Volume 1 (2008), pp. 75-114

[12] L. Borcea; G. Papanicolaou; C. Tsogka Interferometric array imaging in clutter, Inverse Problems, Volume 21 (2005) no. 4, pp. 1419-1460

[13] L. Borcea; G. Papanicolaou; C. Tsogka Coherent interferometric imaging, Geophysics, Volume 71 (2006) no. 4, p. SI165-SI175

[14] L. Borcea; G. Papanicolaou; C. Tsogka Adaptive interferometric imaging in clutter and optimal illumination, Inverse Problems, Volume 22 (2006) no. 4, pp. 1405-1436

[15] L. Borcea; G. Papanicolaou; C. Tsogka Asymptotics for the space–time Wigner transform with applications to imaging (P.H. Baxendale; S.V. Lototsky, eds.), Stochastic Differential Equations: Theory and Applications, Volume in Honor of Professor Boris L. Rozovskii, Interdisciplinary Mathematical Sciences, vol. 2, World Scientific, 2007, pp. 91-112

[16] M. Born; E. Wolf Principles of Optics, Academic Press, New York, 1970

[17] G. Christakos Random Field Models in Earth Sciences, Dover, New York, 2005

[18] G. Papanicolaou; K. Solna Wavelet based estimation of Kolmogorov turbulence (P. Doukhan; G. Oppenmeim; M.S. Taqqu, eds.), Long-Range Dependence: Theory and Applications, Birkhäuser, 2003, pp. 473-505

[19] L. Borcea; G. Papanicolaou; C. Tsogka Optimal illumination and waveform design for imaging in random media, J. Acoust. Soc. Am., Volume 122 (2007), pp. 3507-3519

[20] K.J. Langenberg; R. Marklein; K. Mayer; T. Krylov; P. Ampha; M. Krause; D. Streicher Wavefield inversion in nondestructive testing (I.M. Pinto; V. Galdi; L.B. Felsen, eds.), Electromagnetics in a Complex World — Challenges and Perspectives, Springer, 2003, pp. 277-285

[21] R. Marklein; K.J. Langenberg; K. Mayer; J. Miao; A. Shilivinski; A. Zimmer; W. Müller; V. Schmitz; C. Kohl; U. Mletzko Recent applications and advances of numerical modeling and wavefield inversion in nondestructive testing, Adv. Radio Sci., Volume 3 (2005), pp. 167-174

[22] E. Bécache; P. Joly; C. Tsogka An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1053-1084

[23] L. Ryzhik; G. Papanicolaou; J.B. Keller Transport equations for elastic and other waves in random media, Wave Motion, Volume 24 (1996), pp. 327-370

[24] M.C.W. van Rossum; Th.M. Nieuwenhuizen Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion, Rev. Modern Phys., Volume 71 (1999), pp. 313-371

[25] A. Derode; A. Tourin; M. Fink Limits of time-reversal focusing through multiple scattering: Long range correlation, J. Acoust. Soc. Am., Volume 107 (2000), pp. 2987-2998

[26] L. Borcea; F. Gonzalez del Cueto; G. Papanicolaou; C. Tsogka Filtering deterministic layer effects in imaging, SIAM Multiscale Model. Simul., Volume 7 (2009), pp. 1267-1301

[27] L. Borcea; F. Gonzalez del Cueto; G. Papanicolaou; C. Tsogka Filtering random layer effects in imaging, SIAM Multiscale Model. Simul., Volume 8 (2010), pp. 751-781

[28] R. Alonso, L. Borcea, G. Papanicolaou, C. Tsogka, Detection and imaging in strongly backscattering randomly layered media, 2010, Preprint.

[29] L. Borcea; G. Papanicolaou; C. Tsogka Optimal waveform design for array imaging, Inverse Problems, Volume 23 (2007), pp. 1973-2020

[30] H.J. Landau; H.O. Pollak Prolate spheroidal wave functions, Fourier analysis and uncertainty, II, Bell Systems Tech. J., Volume 40 (1961), pp. 65-84

[31] D. Slepian; H.O. Pollak Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, Bell Systems Tech. J., Volume 40 (1961), pp. 43-64

Cited by Sources:

Comments - Policy