Comptes Rendus
Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids
Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 663-669.

The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2010.09.001
Mots clés : Rupture, Damage, Finite elasticity, Quasi-crack

Claude Stolz 1, 2

1 LMS, CNRS UMR7649, École polytechnique, 91128 Palaiseau cedex, France
2 LaMSID, EdF–CEA R&D, CNRS UMR2832, 92141 Clamart cedex, France
@article{CRMECA_2010__338_12_663_0,
     author = {Claude Stolz},
     title = {Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {663--669},
     publisher = {Elsevier},
     volume = {338},
     number = {12},
     year = {2010},
     doi = {10.1016/j.crme.2010.09.001},
     language = {en},
}
TY  - JOUR
AU  - Claude Stolz
TI  - Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 663
EP  - 669
VL  - 338
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2010.09.001
LA  - en
ID  - CRMECA_2010__338_12_663_0
ER  - 
%0 Journal Article
%A Claude Stolz
%T Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids
%J Comptes Rendus. Mécanique
%D 2010
%P 663-669
%V 338
%N 12
%I Elsevier
%R 10.1016/j.crme.2010.09.001
%G en
%F CRMECA_2010__338_12_663_0
Claude Stolz. Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 663-669. doi : 10.1016/j.crme.2010.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.001/

[1] J.K. Knowles; E. Sternberg Discontinuous deformation gradients near the tip of a crack in finite anti-plane shear: an example, J. Elasticity, Volume 10 (1980) no. 1, pp. 81-110

[2] J.K. Knowles The finite antiplane shear field near the tip of a crack for a class of incompressible elastic solids, Int. J. Fracture, Volume 13 (1977) no. 5, pp. 611-639

[3] C. Stolz Mécanique en transformation finie, hyperélasticité, rupture, plasticité, Editions Ellipses, Ecole Polytechnique, 2009

[4] H.D. Bui; A. Ehrlacher Propagation dynamique d'une zone endommagée dans un solide élastique-fragile en mode III et en régime permanent, C. R. Acad. Sci. Paris, Ser. B, Volume 290 (1980), pp. 273-276

[5] H.D. Bui Solution explicite d'un problème de frontière libre en élastoplasticité avec endommagement, C. R. Acad. Sci. Paris, Ser. B, Volume 290 (1980), pp. 345-348

[6] H. Neuber A physically non linear notch and crack model, J. Mech. Phys. Solids, Volume 16 (1998), pp. 289-294

[7] R. Abeyaratne Discontinuous Deformation Gradient away from the tip of a crack in anti-plane shear, J. Elasticity, Volume 11 (1981), pp. 373-393

[8] J.R. Rice Stresses due to a sharp notch in a work-hardening elastic plastic material loaded by longitudinal shear, J. Appl. Mech., Volume 32 (1967), pp. 287-298

[9] J.K. Knowles; E. Sternberg On a class of conservation laws in linearized and finite elastostatics, Arch. Rat. Mech. Analysis, Volume 44 (1972), pp. 187-211

Cité par Sources :

Commentaires - Politique