The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.
Accepté le :
Publié le :
Claude Stolz 1, 2
@article{CRMECA_2010__338_12_663_0, author = {Claude Stolz}, title = {Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids}, journal = {Comptes Rendus. M\'ecanique}, pages = {663--669}, publisher = {Elsevier}, volume = {338}, number = {12}, year = {2010}, doi = {10.1016/j.crme.2010.09.001}, language = {en}, }
TY - JOUR AU - Claude Stolz TI - Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids JO - Comptes Rendus. Mécanique PY - 2010 SP - 663 EP - 669 VL - 338 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2010.09.001 LA - en ID - CRMECA_2010__338_12_663_0 ER -
Claude Stolz. Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 663-669. doi : 10.1016/j.crme.2010.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.001/
[1] Discontinuous deformation gradients near the tip of a crack in finite anti-plane shear: an example, J. Elasticity, Volume 10 (1980) no. 1, pp. 81-110
[2] The finite antiplane shear field near the tip of a crack for a class of incompressible elastic solids, Int. J. Fracture, Volume 13 (1977) no. 5, pp. 611-639
[3] Mécanique en transformation finie, hyperélasticité, rupture, plasticité, Editions Ellipses, Ecole Polytechnique, 2009
[4] Propagation dynamique d'une zone endommagée dans un solide élastique-fragile en mode III et en régime permanent, C. R. Acad. Sci. Paris, Ser. B, Volume 290 (1980), pp. 273-276
[5] Solution explicite d'un problème de frontière libre en élastoplasticité avec endommagement, C. R. Acad. Sci. Paris, Ser. B, Volume 290 (1980), pp. 345-348
[6] A physically non linear notch and crack model, J. Mech. Phys. Solids, Volume 16 (1998), pp. 289-294
[7] Discontinuous Deformation Gradient away from the tip of a crack in anti-plane shear, J. Elasticity, Volume 11 (1981), pp. 373-393
[8] Stresses due to a sharp notch in a work-hardening elastic plastic material loaded by longitudinal shear, J. Appl. Mech., Volume 32 (1967), pp. 287-298
[9] On a class of conservation laws in linearized and finite elastostatics, Arch. Rat. Mech. Analysis, Volume 44 (1972), pp. 187-211
Cité par Sources :
Commentaires - Politique