Comptes Rendus
Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals
Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 670-674.

In polycrystalline elastic simulations, grain boundaries can be considered as volume interphases or as elastic interfaces assuming a displacement jump across the interface. Such an interface description does not account for the in-plane deformation of the interface and Poisson effects cannot be reproduced. The purpose of this Note is to provide an enriched description of the elastic interface which takes into account such effects. When considering a multilayer material, the interphase description and the enriched interface description yield identical homogenized behaviour while quite important discrepancies can be observed with the classical interface description.

Afin de réaliser des simulations du comportement élastique de polycristaux, les joints de grains peuvent être considérés comme des interphases volumiques ou comme des interfaces auxquelles on associe classiquement un saut de déplacement. Cette description ne prend pas en compte la déformation dans le plan de l'interface et ne peut rendre compte d'effets de type Poisson. L'objet de cette Note est donc de proposer une description enrichie du comportement élastique d'interfaces. Appliquées au cas d'un matériau multi-couches, les descriptions « interface enrichie » et « interphase volumique » conduisent à un comportement homogénéisé identique tandis que d'importants écarts sont observés avec la description « interface classique ».

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2010.10.009
Keywords: Material engineering, Micromechanics modeling, Imperfect interfaces, Interphase, Polycrystal, Multi-layer material
Mot clés : Génie des matériaux, Modélisation micromécanique, Interfaces imparfaites, Interphase, Polycrystal, Matériau multi-couches

Lionel Gélébart 1

1 CEA-Saclay DEN/DMN/SRMA, 91190 Gif-sur-Yvette, France
@article{CRMECA_2010__338_12_670_0,
     author = {Lionel G\'el\'ebart},
     title = {Modelling of planar interface elastic behaviour: {Application} to grain boundaries in polycrystals},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {670--674},
     publisher = {Elsevier},
     volume = {338},
     number = {12},
     year = {2010},
     doi = {10.1016/j.crme.2010.10.009},
     language = {en},
}
TY  - JOUR
AU  - Lionel Gélébart
TI  - Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 670
EP  - 674
VL  - 338
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2010.10.009
LA  - en
ID  - CRMECA_2010__338_12_670_0
ER  - 
%0 Journal Article
%A Lionel Gélébart
%T Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals
%J Comptes Rendus. Mécanique
%D 2010
%P 670-674
%V 338
%N 12
%I Elsevier
%R 10.1016/j.crme.2010.10.009
%G en
%F CRMECA_2010__338_12_670_0
Lionel Gélébart. Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 670-674. doi : 10.1016/j.crme.2010.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.009/

[1] J.P. Crocombette; L. Gélébart Multiscale modeling of the thermal conductivity of polycrystalline silicon carbide, J. Appl. Phys., Volume 106 (2009), p. 083520

[2] F. Berthier; J. Creuze; R. Tétot; B. Legrand Structural phase transition induced by interfacial segregation: a comparison between surface and grain boundary, Appl. Surf. Sci., Volume 177 (2001), pp. 243-251

[3] R. Dingreville; J. Qu A semi-analytical method to estimate interface elastic properties, Comput. Mater. Sci., Volume 46 (2009), pp. 83-91

[4] J.L. Bassani; V. Vitek; I. Alber Atomic-level elastic properties of interfaces and their relation to continua, Acta Mater., Volume 40 (1992), pp. 307-320

[5] V. Vitek; G.J. Wang; E.S. Alber; J.L. Bassani Relationship between modelling of the atomic structure of grain boundaries and studies of mechanical properties, J. Phys. Chem. Solids, Volume 55 (1994), pp. 1147-1156

[6] H.H. Fu; D.J. Benson; M.A. Meyers Computational description of nanocrystalline deformation based on crystal plasticity, Acta Mater., Volume 52 (2004), pp. 4413-4425

[7] L. Dormieux; J. Nahuja; Y. Maale Résistance d'un polycristal avec interfaces intergranulaires imparfaites, C. R. Mecanique, Volume 335 (2007), pp. 25-31

[8] L. Capolungo; S. Benkassem; M. Cherkaoui; J. Qu Self-consistent scale transition with imperfect interfaces: Application to nanocrystalline materials, Acta Mater., Volume 56 (2008), pp. 1546-1554

[9] Z. Hashin Thin interphase/imperfect interface in elasticity with application to coated fibres, J. Mech. Phys. Solids, Volume 50 (2002), pp. 2509-2537

[10] Y. Benveniste A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Solids, Volume 54 (2006), pp. 708-734

[11] A. Roos; J.L. Chaboche; L. Gélébart; J. Crépin Multiscale modelling of titanium aluminides, Internat. J. Plasticity, Volume 20 (2003), pp. 811-830

[12] L. Gélébart, Approche multi-échelles du comportement mécanique de l'alliage TiAl48Cr2Nb2, PhD Thesis, Ecole Polytechnique, 2002.

Cited by Sources:

Comments - Policy