[Identification de variables aléatoires multi-modales par mélange de décompositions sur la chaos polynômial]
Une méthodologie est proposée pour l'identification d'une variable aléatoire multi-modale à partir d'échantillons. La variable aléatoire est vue comme un mélange fini de variables aléatoires uni-modales. Une représentation fonctionnelle de la variable aléatoire est utilisée. Elle peut être interprétée comme un mélange de décompositions sur le chaos polynômial. Après une séparation adaptée des échantillons en sous-ensembles d'échantillons uni-modaux, les coefficients de la décomposition sont identifiés en utilisant une technique de projection empirique. Cette procédure d'identification permet une représentation générique d'une large classe de variables aléatoires multi-modales avec une décomposition sur chaos polynômial généralisé de faible degré.
A methodology is introduced for the identification of a multi-modal real-valued random variable from a collection of samples. The random variable is seen as a finite mixture of uni-modal random variables. A functional representation of the random variable is used, which can be interpreted as a mixture of polynomial chaos expansions. After a suitable separation of samples into sets of uni-modal samples, the coefficients of the expansion are identified by using an empirical projection technique. This identification procedure allows for a generic representation of a large class of multi-modal random variables with low-order generalized polynomial chaos representations.
Accepté le :
Publié le :
Mots-clés : Statistique, Quantification d'incertitudes, Identification, Densité multi-modale, Chaos Polynômial, Modèle de mélange fini, Méthodes spectrales stochastiques
Anthony Nouy 1
@article{CRMECA_2010__338_12_698_0, author = {Anthony Nouy}, title = {Identification of multi-modal random variables through mixtures of polynomial chaos expansions}, journal = {Comptes Rendus. M\'ecanique}, pages = {698--703}, publisher = {Elsevier}, volume = {338}, number = {12}, year = {2010}, doi = {10.1016/j.crme.2010.09.003}, language = {en}, }
Anthony Nouy. Identification of multi-modal random variables through mixtures of polynomial chaos expansions. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 698-703. doi : 10.1016/j.crme.2010.09.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.003/
[1] Stochastic Finite Elements: A Spectral Approach, Springer, Berlin, 1991
[2] Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Archives of Computational Methods in Engineering, Volume 16 (2009) no. 3, pp. 251-285
[3] Fast numerical methods for stochastic computations: A review, Communications in Computational Physics, Volume 5 (2009), pp. 242-272
[4] Stochastic finite elements: Computational approaches to stochastic partial differential equations, Zamm-Zeitschrift fur Angewandte Mathematik und Mechanik, Volume 88 (2008) no. 11, pp. 849-873
[5] The homogeneous chaos, Am. J. Math., Volume 60 (1938), pp. 897-936
[6] The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, The Annals of Mathematics, Second Series, Volume 48 (1947) no. 2, pp. 385-392
[7] Solution of stochastic partial differential equations using Galerkin finite element techniques, Computer Methods in Applied Mechanics and Engineering, Volume 190 (2001), pp. 6359-6372
[8] Uncertainty propagation using Wiener–Haar expansions, Journal of Computational Physics, Volume 197 (2004) no. 1, pp. 28-57
[9] Multi-element generalized polynomial chaos for arbitrary propability measures, SIAM Journal on Scientific Computing, Volume 28 (2006) no. 3, pp. 901-928
[10] Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM Journal on Scientific Computing, Volume 26 (2004) no. 2, pp. 395-410
[11] Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, Volume 66 (2006) no. 6, pp. 978-1001
[12] Identification of random shapes from images through polynomial chaos expansion of random level-set functions, International Journal for Numerical Methods in Engineering, Volume 79 (2009) no. 2, pp. 127-155
[13] On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, Volume 217 (2006) no. 1, pp. 63-81
[14] Identification of bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, Volume 229 (2010) no. 9, pp. 3134-3154
[15] A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 45-48, pp. 4521-4537
[16] Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2008), pp. 4718-4736
[17] A. Nouy. Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Archives of Computational Methods in Engineering (2010), , in press. | DOI
[18] Finite Mixture Models, Wiley, New York, 2000
[19] The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, Volume 24 (2002) no. 2, pp. 619-644
[20] The Bayesian Choice, Springer Verlag, New York, 1994
[21] Bayesian Data, Analysis, Chapman and Hall, Boca Raton, FL, 2003
- SeAr PC: sensitivity enhanced arbitrary polynomial chaos, Computer Methods in Applied Mechanics and Engineering, Volume 431 (2024), p. 17 (Id/No 117269) | DOI:10.1016/j.cma.2024.117269 | Zbl:1550.74475
- An uncertainty propagation method for multimodal distributions through unimodal decomposition strategy, Structural and Multidisciplinary Optimization, Volume 66 (2023) no. 6 | DOI:10.1007/s00158-023-03591-z
- Identification of missing input distributions with an inverse multi-modal Polynomial Chaos approach based on scarce data, Probabilistic Engineering Mechanics, Volume 65 (2021), p. 103138 | DOI:10.1016/j.probengmech.2021.103138
- Stochastic constitutive modeling of elastic-plastic materials with uncertain properties, Computers and Geotechnics, Volume 125 (2020), p. 103642 | DOI:10.1016/j.compgeo.2020.103642
- , 2017 IEEE Conference on Control Technology and Applications (CCTA) (2017), p. 1751 | DOI:10.1109/ccta.2017.8062710
- Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability, Journal of the Mechanical Behavior of Biomedical Materials, Volume 65 (2017), p. 743 | DOI:10.1016/j.jmbbm.2016.09.022
- Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping, SIAM/ASA Journal on Uncertainty Quantification, Volume 5 (2017), pp. 540-571 | DOI:10.1137/16m1083621 | Zbl:1375.65005
- A fractal permeability model for shale gas flow through heterogeneous matrix systems, Journal of Natural Gas Science and Engineering, Volume 35 (2016), p. 593 | DOI:10.1016/j.jngse.2016.08.033
- A stochastic permeability model for the shale-gas systems, International Journal of Coal Geology, Volume 140 (2015), p. 111 | DOI:10.1016/j.coal.2015.02.004
- An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions, Journal of Computational Physics, Volume 294 (2015), pp. 173-190 | DOI:10.1016/j.jcp.2015.03.047 | Zbl:1349.62025
- Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis, Nuclear Engineering and Design, Volume 289 (2015), p. 144 | DOI:10.1016/j.nucengdes.2015.04.035
- Polynomial Chaos Expansion of a Multimodal Random Vector, SIAM/ASA Journal on Uncertainty Quantification, Volume 3 (2015) no. 1, p. 34 | DOI:10.1137/140968495
- Robust optimization of well location to enhance hysteretical trapping of CO2: Assessment of various uncertainty quantification methods and utilization of mixed response surface surrogates, Water Resources Research, Volume 51 (2015) no. 12, p. 9402 | DOI:10.1002/2015wr017418
- Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials, Computer Methods in Applied Mechanics and Engineering, Volume 254 (2013), pp. 61-82 | DOI:10.1016/j.cma.2012.10.016 | Zbl:1297.74020
- Using finite mixture models in thermal-hydraulics system code uncertainty analysis, Nuclear Engineering and Design, Volume 262 (2013), p. 306 | DOI:10.1016/j.nucengdes.2013.04.030
- , 2012 Oceans (2012), p. 1 | DOI:10.1109/oceans.2012.6404854
Cité par 16 documents. Sources : Crossref, zbMATH
Commentaires - Politique