Comptes Rendus
Identification of multi-modal random variables through mixtures of polynomial chaos expansions
[Identification de variables aléatoires multi-modales par mélange de décompositions sur la chaos polynômial]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 698-703.

Une méthodologie est proposée pour l'identification d'une variable aléatoire multi-modale à partir d'échantillons. La variable aléatoire est vue comme un mélange fini de variables aléatoires uni-modales. Une représentation fonctionnelle de la variable aléatoire est utilisée. Elle peut être interprétée comme un mélange de décompositions sur le chaos polynômial. Après une séparation adaptée des échantillons en sous-ensembles d'échantillons uni-modaux, les coefficients de la décomposition sont identifiés en utilisant une technique de projection empirique. Cette procédure d'identification permet une représentation générique d'une large classe de variables aléatoires multi-modales avec une décomposition sur chaos polynômial généralisé de faible degré.

A methodology is introduced for the identification of a multi-modal real-valued random variable from a collection of samples. The random variable is seen as a finite mixture of uni-modal random variables. A functional representation of the random variable is used, which can be interpreted as a mixture of polynomial chaos expansions. After a suitable separation of samples into sets of uni-modal samples, the coefficients of the expansion are identified by using an empirical projection technique. This identification procedure allows for a generic representation of a large class of multi-modal random variables with low-order generalized polynomial chaos representations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2010.09.003
Keywords: Statistics, Uncertainty quantification, Identification, Multi-modal density, Polynomial chaos, Finite mixture model, Spectral stochastic methods
Mots-clés : Statistique, Quantification d'incertitudes, Identification, Densité multi-modale, Chaos Polynômial, Modèle de mélange fini, Méthodes spectrales stochastiques

Anthony Nouy 1

1 GeM - UMR CNRS 6183, École centrale Nantes, Université de Nantes, 1, rue de la Noë, 44321 Nantes, France
@article{CRMECA_2010__338_12_698_0,
     author = {Anthony Nouy},
     title = {Identification of multi-modal random variables through mixtures of polynomial chaos expansions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {698--703},
     publisher = {Elsevier},
     volume = {338},
     number = {12},
     year = {2010},
     doi = {10.1016/j.crme.2010.09.003},
     language = {en},
}
TY  - JOUR
AU  - Anthony Nouy
TI  - Identification of multi-modal random variables through mixtures of polynomial chaos expansions
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 698
EP  - 703
VL  - 338
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2010.09.003
LA  - en
ID  - CRMECA_2010__338_12_698_0
ER  - 
%0 Journal Article
%A Anthony Nouy
%T Identification of multi-modal random variables through mixtures of polynomial chaos expansions
%J Comptes Rendus. Mécanique
%D 2010
%P 698-703
%V 338
%N 12
%I Elsevier
%R 10.1016/j.crme.2010.09.003
%G en
%F CRMECA_2010__338_12_698_0
Anthony Nouy. Identification of multi-modal random variables through mixtures of polynomial chaos expansions. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 698-703. doi : 10.1016/j.crme.2010.09.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.003/

[1] R. Ghanem; P. Spanos Stochastic Finite Elements: A Spectral Approach, Springer, Berlin, 1991

[2] A. Nouy Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Archives of Computational Methods in Engineering, Volume 16 (2009) no. 3, pp. 251-285

[3] D. Xiu Fast numerical methods for stochastic computations: A review, Communications in Computational Physics, Volume 5 (2009), pp. 242-272

[4] H.G. Matthies Stochastic finite elements: Computational approaches to stochastic partial differential equations, Zamm-Zeitschrift fur Angewandte Mathematik und Mechanik, Volume 88 (2008) no. 11, pp. 849-873

[5] N. Wiener The homogeneous chaos, Am. J. Math., Volume 60 (1938), pp. 897-936

[6] R.H. Cameron; W.T. Martin The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, The Annals of Mathematics, Second Series, Volume 48 (1947) no. 2, pp. 385-392

[7] M. Deb; I. Babuška; J.T. Oden Solution of stochastic partial differential equations using Galerkin finite element techniques, Computer Methods in Applied Mechanics and Engineering, Volume 190 (2001), pp. 6359-6372

[8] O.P. Le Maître; O.M. Knio; H.N. Najm; R.G. Ghanem Uncertainty propagation using Wiener–Haar expansions, Journal of Computational Physics, Volume 197 (2004) no. 1, pp. 28-57

[9] X. Wan; G.E. Karniadakis Multi-element generalized polynomial chaos for arbitrary propability measures, SIAM Journal on Scientific Computing, Volume 28 (2006) no. 3, pp. 901-928

[10] C. Soize; R. Ghanem Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM Journal on Scientific Computing, Volume 26 (2004) no. 2, pp. 395-410

[11] C. Desceliers; R. Ghanem; C. Soize Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, Volume 66 (2006) no. 6, pp. 978-1001

[12] G. Stefanou; A. Nouy; A. Clément Identification of random shapes from images through polynomial chaos expansion of random level-set functions, International Journal for Numerical Methods in Engineering, Volume 79 (2009) no. 2, pp. 127-155

[13] R. Ghanem; A. Doostan On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, Volume 217 (2006) no. 1, pp. 63-81

[14] M. Arnst; R. Ghanem; C. Soize Identification of bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, Volume 229 (2010) no. 9, pp. 3134-3154

[15] A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 45-48, pp. 4521-4537

[16] A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2008), pp. 4718-4736

[17] A. Nouy. Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Archives of Computational Methods in Engineering (2010), , in press. | DOI

[18] G.J. McLachlan; D. Peel Finite Mixture Models, Wiley, New York, 2000

[19] D. Xiu; G.E. Karniadakis The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, Volume 24 (2002) no. 2, pp. 619-644

[20] C.P. Robert The Bayesian Choice, Springer Verlag, New York, 1994

[21] A. Gelman; J.B. Carlin; H.S. Stern; D.B. Rubin Bayesian Data, Analysis, Chapman and Hall, Boca Raton, FL, 2003

  • Nick Pepper; Francesco Montomoli; Kyriakos Kantarakias SeAr PC: sensitivity enhanced arbitrary polynomial chaos, Computer Methods in Applied Mechanics and Engineering, Volume 431 (2024), p. 17 (Id/No 117269) | DOI:10.1016/j.cma.2024.117269 | Zbl:1550.74475
  • Boqun Xie; Chao Jiang; Zhe Zhang; Jing Zheng; Jinwu Li An uncertainty propagation method for multimodal distributions through unimodal decomposition strategy, Structural and Multidisciplinary Optimization, Volume 66 (2023) no. 6 | DOI:10.1007/s00158-023-03591-z
  • Nick Pepper; Francesco Montomoli; Sanjiv Sharma Identification of missing input distributions with an inverse multi-modal Polynomial Chaos approach based on scarce data, Probabilistic Engineering Mechanics, Volume 65 (2021), p. 103138 | DOI:10.1016/j.probengmech.2021.103138
  • Maxime Lacour; Norman A. Abrahamson Stochastic constitutive modeling of elastic-plastic materials with uncertain properties, Computers and Geotechnics, Volume 125 (2020), p. 103642 | DOI:10.1016/j.compgeo.2020.103642
  • Patrick Piprek; Florian Holzapfel, 2017 IEEE Conference on Control Technology and Applications (CCTA) (2017), p. 1751 | DOI:10.1109/ccta.2017.8062710
  • B. Staber; J. Guilleminot Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability, Journal of the Mechanical Behavior of Biomedical Materials, Volume 65 (2017), p. 743 | DOI:10.1016/j.jmbbm.2016.09.022
  • Chu V. Mai; Bruno Sudret Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping, SIAM/ASA Journal on Uncertainty Quantification, Volume 5 (2017), pp. 540-571 | DOI:10.1137/16m1083621 | Zbl:1375.65005
  • Lidong Geng; Gensheng Li; Pacelli Zitha; Shouceng Tian; Mao Sheng A fractal permeability model for shale gas flow through heterogeneous matrix systems, Journal of Natural Gas Science and Engineering, Volume 35 (2016), p. 593 | DOI:10.1016/j.jngse.2016.08.033
  • Morteza Elahi Naraghi; Farzam Javadpour A stochastic permeability model for the shale-gas systems, International Journal of Coal Geology, Volume 140 (2015), p. 111 | DOI:10.1016/j.coal.2015.02.004
  • Weixuan Li; Guang Lin An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions, Journal of Computational Physics, Volume 294 (2015), pp. 173-190 | DOI:10.1016/j.jcp.2015.03.047 | Zbl:1349.62025
  • Francesco Di Maio; Giancarlo Nicola; Enrico Zio; Yu Yu Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis, Nuclear Engineering and Design, Volume 289 (2015), p. 144 | DOI:10.1016/j.nucengdes.2015.04.035
  • C. Soize Polynomial Chaos Expansion of a Multimodal Random Vector, SIAM/ASA Journal on Uncertainty Quantification, Volume 3 (2015) no. 1, p. 34 | DOI:10.1137/140968495
  • Masoud Babaei; Indranil Pan; Ali Alkhatib Robust optimization of well location to enhance hysteretical trapping of CO2: Assessment of various uncertainty quantification methods and utilization of mixed response surface surrogates, Water Resources Research, Volume 51 (2015) no. 12, p. 9402 | DOI:10.1002/2015wr017418
  • A. Clément; C. Soize; J. Yvonnet Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials, Computer Methods in Applied Mechanics and Engineering, Volume 254 (2013), pp. 61-82 | DOI:10.1016/j.cma.2012.10.016 | Zbl:1297.74020
  • S. Carlos; A. Sánchez; D. Ginestar; S. Martorell Using finite mixture models in thermal-hydraulics system code uncertainty analysis, Nuclear Engineering and Design, Volume 262 (2013), p. 306 | DOI:10.1016/j.nucengdes.2013.04.030
  • Zongwei Liu; Chao Sun; Jinyan Du, 2012 Oceans (2012), p. 1 | DOI:10.1109/oceans.2012.6404854

Cité par 16 documents. Sources : Crossref, zbMATH

Commentaires - Politique