Comptes Rendus
Experimental evidences of transition from mode I cracking to dilatancy banding
Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 219-225.

Extension fractures of two types defined by the mean stress σ were generated in a synthetic rock analogue material. When σ is very small, the fractures are mode I cracks with smooth surfaces. At higher σ, these surfaces have plumose topography, with the amplitude increasing with σ. Both SEM observations and mechanical measurements show that fractures/discontinuities in the latter case are initiated as dilatancy localization bands. They form under tensile or slightly compressive normal stress and can be seen as running constitutive instabilities. The similarity between the plumose fractography of the experimental fractures and natural joints suggests similarity in the formation mechanism.

Deux types de fractures en extension dépendants de la contrainte moyenne σ ont été obtenus dans un matériau analogue de roches synthétique. Quand σ est très petit, des fractures en mode I se forment et présentent des surfaces lisses. A plus forte σ, des reliefs en structures plumeuses apparaissent sur les surfaces, dont lʼamplitude sʼaccroit avec σ. Des observations au MEB et des mesures mécaniques montrent que dans ce dernier cas, ces fractures/discontinuités sont initiées en tant que bandes de localisation dilatantes. Elles se forment sous de faibles contraintes normales en traction ou en compression et sont interprétées comme des instabilités constitutives propageantes. La similarité entre la fractographie plumeuse expérimentale et celle des diaclases suggère la similarité des mécanismes de formation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2011.01.002
Keywords: Rupture, Rock mechanics, Fractures, Extension tests, Granular material, Dilation bands, Stability and bifurcation, Joints
Mot clés : Rupture, Mécanique des roches, Fractures, Essais en extension, Matériaux granulaires, Bandes de dilatance, Stabilité et bifurcation, Diaclases

Alexandre I. Chemenda 1; Si-Hung Nguyen 1; Jean-Pierre Petit 2; Julien Ambre 1

1 Géoazur, Université de Nice-Sophia Antipolis, CNRS, 250, rue Albert-Einstein, 06560 Valbonne, France
2 Géosciences Montpellier, Université Montpellier 2, place E. Bataillon, 34095 Montpellier cedex 5, France
@article{CRMECA_2011__339_4_219_0,
     author = {Alexandre I. Chemenda and Si-Hung Nguyen and Jean-Pierre Petit and Julien Ambre},
     title = {Experimental evidences of transition from mode {I} cracking to dilatancy banding},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {219--225},
     publisher = {Elsevier},
     volume = {339},
     number = {4},
     year = {2011},
     doi = {10.1016/j.crme.2011.01.002},
     language = {en},
}
TY  - JOUR
AU  - Alexandre I. Chemenda
AU  - Si-Hung Nguyen
AU  - Jean-Pierre Petit
AU  - Julien Ambre
TI  - Experimental evidences of transition from mode I cracking to dilatancy banding
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 219
EP  - 225
VL  - 339
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2011.01.002
LA  - en
ID  - CRMECA_2011__339_4_219_0
ER  - 
%0 Journal Article
%A Alexandre I. Chemenda
%A Si-Hung Nguyen
%A Jean-Pierre Petit
%A Julien Ambre
%T Experimental evidences of transition from mode I cracking to dilatancy banding
%J Comptes Rendus. Mécanique
%D 2011
%P 219-225
%V 339
%N 4
%I Elsevier
%R 10.1016/j.crme.2011.01.002
%G en
%F CRMECA_2011__339_4_219_0
Alexandre I. Chemenda; Si-Hung Nguyen; Jean-Pierre Petit; Julien Ambre. Experimental evidences of transition from mode I cracking to dilatancy banding. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 219-225. doi : 10.1016/j.crme.2011.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.01.002/

[1] J.G.M. Van Mier Fracture Processes of Concrete: Assessment of Material Parameters for Fracture Models, CRC Press, Boca Raton, FL, USA, 1997 (p. 448)

[2] Z.P. Bažant; J. Planas Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, FL/London, 1998

[3] S. Mindess Fracture process zone detection (S.P. Shah; A. Carpinteri, eds.), Fracture Mechanics Test Methods for Concrete, E&FN Spon, London/New York, 1991, pp. 231-261

[4] J.W. Rudnicki; J.R. Rice Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, Volume 23 (1975) no. 6, pp. 371-394

[5] J.R. Rice The localization of plastic deformation (W.T. Koiter, ed.), Theoretical and Applied Mechanics, I.C.T.A.M., vol. 1, North-Holland Pub. Co., 1976, pp. 207-220

[6] D. Bigoni; T. Hueckel Uniqueness and localization–I. Associative and non-associative elastoplasticity, Int. J. Solids Struct., Volume 2B (1991) no. 2, pp. 197-213

[7] N.S. Ottosen; K. Runesson Properties of discontinuous bifurcation solutions in elasto-plasticity, Int. J. Solids Struct., Volume 27 (1991), pp. 401-421

[8] G. Perrin; J.B. Leblond Rudnicki and Riceʼs analysis of strain localization revisited, J. Appl. Mech., Volume 60 (1993), pp. 842-846

[9] K.A. Issen; J.W. Rudnicki Conditions for compaction bands in porous rocks, J. Geophys. Res., Volume 105 (2000), pp. 21529-21536

[10] S.-H. Nguyen; A.I. Chemenda; J. Ambre Influence of the loading conditions on the mechanical response of granular materials as constrained from experimental tests on synthetic rock analogue material, Int. J. Rock Mech. Min. Sci., Volume 48 (2011), pp. 103-115 | DOI

[11] O. Reynolds On the dilatancy of media composed of rigid particles in contact, with experimental illustrations, Phil. Mag., Volume 20 (1885) no. 5, pp. 469-481

[12] D. Bahat Tectono-Fractography, Springer-Verlag, 1991

[13] A.I. Chemenda The formation of shear-band/fracture networks from a constitutive instability: Theory and numerical experiment, J. Geophys. Res., Volume 112 (2007), p. B11404 | DOI

[14] A.I. Chemenda The formation of tabular compaction-band arrays: Theoretical and numerical analysis, J. Mech. Phys. Solids, Volume 57 (2009), pp. 851-868

[15] A.I. Chemenda Origin of compaction bands: Anti-cracking or constitutive instability?, Tectonophys., Volume 499 (2011), pp. 156-164 | DOI

[16] G. de Joussineau; L. Bazalgette; J.-P. Petit; M. Lopez Morphology, intersections, and syn/late-diagenetic origin of vein networks in pelites of the Lodève Permian Basin, Southern France, J. Struct. Geol., Volume 27 (2005), pp. 67-87

[17] D. Bahat Theoretical considerations on mechanical parameters of joint surfaces based on studies on ceramics, Geol. Msg., Volume 116 (1979), pp. 81-92

[18] D.D. Pollard; A. Aydin Progress in understanding jointing over the past century, Bull. Geol. Soc. Am., Volume 100 (1988), pp. 1181-1204

[19] G. Mandl Rock Joints. The Mechanical Genesis, Springer, 2005

[20] H.R. Fossen; A. Schultz; Z.K. Shipton; K. Mair Deformation bands in sandstone: A review, J. Geol. Soc. London, Volume 164 (2007) no. 4, pp. 755-769 | DOI

[21] X. Du Bernard; P. Eichhubl; A. Aydin Dilation bands: A new form of localized failure in granular media, Geophys. Res. Lett., Volume 29 (2002) no. 24, pp. 2176-2180 | DOI

[22] T. Rives; M. Razack; J.-P. Petit; K.D. Rawnsley Joint spacing periodicity: Field data, analog and numerical modelling, J. Struct. Geol., Volume 14 (1992) no. 8–9, pp. 925-937

[23] T. Bai; D.D. Pollard Fracture spacing in layered rocks: A new explanation based on the stress transition, J. Struct. Geol., Volume 22 (2000), pp. 43-57

Cited by Sources:

Comments - Policy