A shallow water-based model for river–floodplain interaction (SW12D for Shallow Water 1D–2D) is presented. The main channel and floodplain are discretized using 1D and 2D elements respectively. The proposed model provides an improved description of hydraulic phenomena over existing models by (i) including lateral momentum transfer between the main channel and the floodplain, (ii) taking the 2D nature of the flow into account within the 1D elements that describe the main channel. This allows for a better description of phenomena such as head losses due to channel bends and meanders, and meander shortcuts during floods.
Un modèle basé sur les équations de Saint-Venant en eau peu profonde (SW12D pour Shallow Water 1D–2D) est présenté. Le lit mineur et le lit majeur sont discrétisés avec des mailles 1D et 2D respectivement. Le modèle proposé apporte une meilleure description (en comparaison aux modèles existants) des phénomènes hydrauliques en (i) incluant un transfert de quantité de mouvement latérale entre les lits mineur et majeur, (ii) prenant en compte la nature 2D des écoulements dans les mailles 1D qui représentent le lit mineur. Cela permet une meilleure description des phénomènes tels que les pertes de charge dues aux coudes et méandres et tels que les court-circuits de meandres pendant les inondations.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Couplage 1D–2D, Modélisation hydrodynamique, Équations de Saint-Venant, Intéractions lit mineur / lit majeur
Pascal Finaud-Guyot 1; Carole Delenne 2; Vincent Guinot 2; Cécile Llovel 3
@article{CRMECA_2011__339_4_226_0, author = {Pascal Finaud-Guyot and Carole Delenne and Vincent Guinot and C\'ecile Llovel}, title = {1D{\textendash}2D coupling for river flow modeling}, journal = {Comptes Rendus. M\'ecanique}, pages = {226--234}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2011}, doi = {10.1016/j.crme.2011.02.001}, language = {en}, }
TY - JOUR AU - Pascal Finaud-Guyot AU - Carole Delenne AU - Vincent Guinot AU - Cécile Llovel TI - 1D–2D coupling for river flow modeling JO - Comptes Rendus. Mécanique PY - 2011 SP - 226 EP - 234 VL - 339 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2011.02.001 LA - en ID - CRMECA_2011__339_4_226_0 ER -
Pascal Finaud-Guyot; Carole Delenne; Vincent Guinot; Cécile Llovel. 1D–2D coupling for river flow modeling. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 226-234. doi : 10.1016/j.crme.2011.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.02.001/
[1] D. Bousmar, Flow modelling in compound channels, PhD thesis, Université Catholique de Louvain, 2002.
[2] Practical Aspects of Computational River Hydraulics, Pitman Publishing Ltd., London, 1980
[3] Mike 11: A Modelling System for Rivers and Channels, Reference Manual, Danish Hydraulic Institute, 2004
[4] An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity, International Journal for Numerical Methods in Fluids, Volume 62 (2010), pp. 1299-1331
[5] P. Finaud-Guyot, Macroscopic flood modelling: Taking into account directional flows and main channel – floodplain transfer, PhD thesis, Université Montpellier 2, 2009 (in French).
[6] Godunov-Type Schemes, An Introduction for Engineers, Elsevier, 2003
[7] Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, International Journal for Numerical Methods in Fluids, Volume 50 (2006), pp. 309-345
[8] Sensitivity analysis of 2D steady-state shallow water flow – Application to free surface flow model calibration, Advances in Water Resources, Volume 32 (2009), pp. 540-560
[9] J.M. Hervouët, Hydrodynamique des écoulements à surface libre – Modélisation numérique avec la méthode des éléments finis, Ponts et Chaussées (Presses), 2003 (in French).
[10] Isis Flow, User Manual, Wallingford Software, 1999
[11] US Army Corps of Engineers, Hydrologic Engineering Center, HEC-Ras, River Analysis System, Hydraulic Reference Manual, November 2002.
Cited by Sources:
Comments - Policy