This article deals with two-dimensional Soret-driven convection in a porous cavity with perfectly conducting boundaries heated from below. It is shown that thermodiffusion effect destroys degeneracy existing in the case of single-component fluid. The scenario of the convection onset is discussed. The boundaries of the diffusive state instability to the small-amplitude and finite-amplitude monotonous and oscillatory perturbations are determined.
Dmitriy Lyubimov 1; Konstantin Gavrilov 1; Tatyana Lyubimova 1, 2
@article{CRMECA_2011__339_5_297_0, author = {Dmitriy Lyubimov and Konstantin Gavrilov and Tatyana Lyubimova}, title = {Soret-driven convection in a porous cavity with perfectly conducting boundaries}, journal = {Comptes Rendus. M\'ecanique}, pages = {297--302}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2011}, doi = {10.1016/j.crme.2011.03.005}, language = {en}, }
TY - JOUR AU - Dmitriy Lyubimov AU - Konstantin Gavrilov AU - Tatyana Lyubimova TI - Soret-driven convection in a porous cavity with perfectly conducting boundaries JO - Comptes Rendus. Mécanique PY - 2011 SP - 297 EP - 302 VL - 339 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2011.03.005 LA - en ID - CRMECA_2011__339_5_297_0 ER -
%0 Journal Article %A Dmitriy Lyubimov %A Konstantin Gavrilov %A Tatyana Lyubimova %T Soret-driven convection in a porous cavity with perfectly conducting boundaries %J Comptes Rendus. Mécanique %D 2011 %P 297-302 %V 339 %N 5 %I Elsevier %R 10.1016/j.crme.2011.03.005 %G en %F CRMECA_2011__339_5_297_0
Dmitriy Lyubimov; Konstantin Gavrilov; Tatyana Lyubimova. Soret-driven convection in a porous cavity with perfectly conducting boundaries. Comptes Rendus. Mécanique, Thermodiffusion and coupled phenomena, Volume 339 (2011) no. 5, pp. 297-302. doi : 10.1016/j.crme.2011.03.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.03.005/
[1] Convection in Porous Media, Springer Science, Business Media, Inc, New York, 2006
[2] Onset of convection and finite amplitude flow due to Soret effect within a horizontal sparsely pecked porous enclosure heated from below, Int. J. Heat and Fluid Flow, Volume 26 (2005), pp. 513-525
[3] On the convective flows in the porous medium heated from below, J. Appl. Mech. Tech. Phys., Volume 16 (1975), pp. 131-137 (in Russian)
[4] Dynamic Properties of Thermal Convection in Porous Medium: Instabilities in Multiphase Flows, Plenum Publishing Co., London, 1993
[5] Convective motions in a porous medium near the equilibrium instability threshold, Sov. Phys. Dokl., Volume 23 (1978), pp. 22-24
[6] Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, 1992
Cited by Sources:
Comments - Policy