Comptes Rendus
Modélisation stochastique dʼécoulements diphasiques avec changement de phase
Comptes Rendus. Mécanique, Volume 339 (2011) no. 6, pp. 418-431.

Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models.

La modélisation stochastique avec point de vue lagrangien a déjà été développée et appliquée au cadre des écoulements monophasiques et des écoulements diphasiques incompressibles. Cet article propose une extension de ce formalisme aux écoulements diphasiques compressibles avec changement de phase (de type eau-vapeur par exemple). Lʼaccent est mis sur deux aspects essentiels, dont la formulation est nouvelle en modélisation stochastique : un modèle de changement de phase et lʼexpression dʼune contrainte portant sur la conservation du volume. Enfin, à titre dʼexemple, des éléments de réflexion sont présentés pour deux modèles bifluides.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2011.04.004
Mot clés : Mécanique des fluides, Écoulement diphasique, Processus stochastique, Changement de phase, Compressible, Bulle
Mot clés : Fluid mechanics, Two-phase flow, Stochastic process, Phase change, Compressible, Bubble

Olivier Hurisse 1; Jean-Pierre Minier 1

1 EDF R&D, département MFEE, 6, quai Watier, 78400 Chatou, France
@article{CRMECA_2011__339_6_418_0,
     author = {Olivier Hurisse and Jean-Pierre Minier},
     title = {Mod\'elisation stochastique d'\'ecoulements diphasiques avec changement de phase},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {418--431},
     publisher = {Elsevier},
     volume = {339},
     number = {6},
     year = {2011},
     doi = {10.1016/j.crme.2011.04.004},
     language = {fr},
}
TY  - JOUR
AU  - Olivier Hurisse
AU  - Jean-Pierre Minier
TI  - Modélisation stochastique dʼécoulements diphasiques avec changement de phase
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 418
EP  - 431
VL  - 339
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2011.04.004
LA  - fr
ID  - CRMECA_2011__339_6_418_0
ER  - 
%0 Journal Article
%A Olivier Hurisse
%A Jean-Pierre Minier
%T Modélisation stochastique dʼécoulements diphasiques avec changement de phase
%J Comptes Rendus. Mécanique
%D 2011
%P 418-431
%V 339
%N 6
%I Elsevier
%R 10.1016/j.crme.2011.04.004
%G fr
%F CRMECA_2011__339_6_418_0
Olivier Hurisse; Jean-Pierre Minier. Modélisation stochastique dʼécoulements diphasiques avec changement de phase. Comptes Rendus. Mécanique, Volume 339 (2011) no. 6, pp. 418-431. doi : 10.1016/j.crme.2011.04.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.04.004/

[1] M. Ishii; T. Hibiki Thermo-fluid Dynamics of Two-Phase Flow, Springer, 2005

[2] H.B. Stewart; B. Wendroff Two-phase flow: models and methods, J. Comput. Phys., Volume 56 (1984), pp. 363-409

[3] S.B. Pope Turbulent Flows, Cambridge University Press, 2000

[4] J.-P. Minier; E. Peirano The PDF approach to turbulent polydispersed two-phase flows, Phys. Rep., Volume 352 (2001), pp. 1-214

[5] B.J. Delarue; S.B. Pope Application of PDF methods to compressible turbulent flows, Phys. Fluids, Volume 9 (1997), pp. 2704-2715

[6] C. Gardiner Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer, 1985

[7] F. Coquel; T. Gallouët; J.-M. Hérard; N. Seguin Closure laws for a two-fluid two-pressure model, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 927-932

[8] V. Ransom; D. Hicks Hyperbolic two-pressure model for two-phase flow, J. Comput. Phys., Volume 53 (1984), pp. 124-151

[9] M.R. Baer; J.W. Nunziato A two phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, Volume 12 (1986) no. 6, pp. 861-889

[10] A.K. Kapila; S.F. Son; J.B. Bdzil; R. Menikoff; D.S. Stewart Two-phase modeling of DDT: structure of the velocity relaxation zone, Phys. Fluids, Volume 9 (1997), pp. 3885-3897

[11] S. Gavrilyuk; R. Saurel Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys., Volume 175 (2002) no. 1, pp. 326-360

[12] M. Muradoglu; P. Jenny; S.B. Pope; D.A. Caughey A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows, J. Comput. Phys., Volume 154 (1999), pp. 342-371

[13] K. Dorogan, J.-M. Hérard, J.-P. Minier, A relaxation scheme for hybrid modelling of gas-particle flows, submitted for publication in revised form.

Cited by Sources:

Comments - Policy