We examine the band spectrum, and associated Floquet–Bloch eigensolutions, arising in a class of three-phase periodic checkerboards. On a periodic cell , the refractive index, n, is defined by with for , and for where is constant. We find that for the lowest frequency branch goes through origin with linear behaviour, which leads to effective properties encountered in most periodic structures. However, the case whereby is very unusual, as the frequency λ behaves like near the origin, where k is the wavenumber. Finally, when , the lowest branch does not pass through the origin and a zero-frequency band gap opens up. In the last two cases, effective medium theory breaks down even in the quasi-static limit, while the high-frequency homogenization [R.V. Craster, J. Kaplunov, A.V. Pichugin, High-frequency homogenization for periodic media, Proc. R. Soc. Lond. Ser. A 466 (2010) 2341–2362] neatly captures the detailed features of band diagrams.
Nous étudions le spectre de bande associé aux modes de Floquet–Bloch dans une classe dʼéchiquiers périodiques. Sur une cellule de base , lʼindice de réfraction, n, est défini par où (une constante) pour , et pour . Pour , la première bande passe par lʼorigine avec un comportement linéaire, ce qui conduit à des propriétés effectives rencontrées dans la plupart des structures périodiques. En revanche, le cas est moins ordinaire, puisque la bande de fréquences acoustiques λ se comporte comme au voisinage de lʼorigine, avec k le nombre dʼonde. Finallement, quand , la bande acoustique disparaît : la première bande ne passe plus par lʼorigine et une bande interdite à fréquence nulle apparaît. Dans ces deux derniers cas de figure, la théorie des milieux effectifs ne sʼapplique pas, alors que la théorie dʼhomogénéisation hautes fréquences [R.V. Craster, J. Kaplunov, A.V. Pichugin, High-frequency homogenization for periodic media, Proc. R. Soc. Lond. Ser. A 466 (2010) 2341–2362] reproduit avec précision les diagrammes de bandes.
Accepted:
Published online:
Mots-clés : Ondes, Homogénéisation, Réfraction négative, Bande acoustique
Richard V. Craster 1; Sébastien Guenneau 2; Julius Kaplunov 3; Evgeniya Nolde 3
@article{CRMECA_2011__339_6_411_0, author = {Richard V. Craster and S\'ebastien Guenneau and Julius Kaplunov and Evgeniya Nolde}, title = {On a class of three-phase checkerboards with unusual effective properties}, journal = {Comptes Rendus. M\'ecanique}, pages = {411--417}, publisher = {Elsevier}, volume = {339}, number = {6}, year = {2011}, doi = {10.1016/j.crme.2011.03.016}, language = {en}, }
TY - JOUR AU - Richard V. Craster AU - Sébastien Guenneau AU - Julius Kaplunov AU - Evgeniya Nolde TI - On a class of three-phase checkerboards with unusual effective properties JO - Comptes Rendus. Mécanique PY - 2011 SP - 411 EP - 417 VL - 339 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2011.03.016 LA - en ID - CRMECA_2011__339_6_411_0 ER -
%0 Journal Article %A Richard V. Craster %A Sébastien Guenneau %A Julius Kaplunov %A Evgeniya Nolde %T On a class of three-phase checkerboards with unusual effective properties %J Comptes Rendus. Mécanique %D 2011 %P 411-417 %V 339 %N 6 %I Elsevier %R 10.1016/j.crme.2011.03.016 %G en %F CRMECA_2011__339_6_411_0
Richard V. Craster; Sébastien Guenneau; Julius Kaplunov; Evgeniya Nolde. On a class of three-phase checkerboards with unusual effective properties. Comptes Rendus. Mécanique, Volume 339 (2011) no. 6, pp. 411-417. doi : 10.1016/j.crme.2011.03.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.03.016/
[1] High-frequency homogenization for periodic media, Proc. R. Soc. Lond. Ser. A, Volume 466 (2010), pp. 2341-2362
[2] Quantum mechanics in crystals lattices, Proc. R. Soc. Lond., Volume 130 (1931), pp. 499-531
[3] The electrodynamics of substances with simultaneously negative value of ϵ and μ, Sov. Phys. Usp., Volume 10 (1968), pp. 509-514
[4] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 86 (2000), p. 3966
[5] Anomalous refractive properties of photonic crystals, J. Opt. Soc. Am. A, Volume 17 (2000), p. 1012
[6] All-angle negative refraction without negative effective index, Phys. Rev. B, Volume 65 (2002), p. 201104
[7] Water-wave propagation through an infinite array of cylindrical structures, J. Fluid Mech., Volume 424 (2000), pp. 101-125
[8] Superlensing effect in liquid surface waves, Phys. Rev. E, Volume 69 (2004), p. 030201
[9] Focusing ultrasound with acoustic metamaterial network, Phys. Rev. Lett., Volume 102 (2009) no. 19, p. 194301
[10] All-angle-negative-refraction and ultra-refraction for liquid surface waves in 2-D phononic crystals, J. Comput. Appl. Math., Volume 234 (2010), pp. 2011-2019
[11] Wave Propagation in Periodic Structures, McGraw-Hill, 1946
[12] High-frequency homogenization for checkerboard structures: Defect modes, ultrarefraction, and all-angle negative refraction, J. Opt. Soc. Am. A, Volume 28 (2011) no. 6, pp. 1032-1040
[13] High frequency asymptotics, homogenization and localization for lattices, QJMAM, Volume 63 (2010), pp. 497-519
[14] High frequency homogenization for structural mechanics, J. Mech. Phys. Solids, Volume 59 (2010), pp. 651-671
[15] A theorem on the conductivity of a composite medium, J. Math. Phys., Volume 5 (1964), p. 548
[16] A two-dimensional homogenization problem, Atti Accad. Naz. Lincei Rend Cl. Sci. Fis. Mat. Natur., Volume 78 (1985), p. 77
[17] Four phase checkerboard composites, SIAM J. Appl. Math., Volume 61 (2001), pp. 1839-1856
[18] Proof of a conjecture on the conductivity of checkerboards, J. Math. Phys., Volume 42 (2001), pp. 4873-4882
[19] Duality relation for the Maxwell system, Phys. Rev. E, Volume 67 (2003), p. 026610
[20] Negative refractive index, perfect lenses and checkerboards: Trapping and imaging effects in folded optical spaces, C. R. Physique, Volume 10 (2009), pp. 352-378
[21] Non-commuting limits in electromagnetic scattering: asymptotic analysis for an array of highly conducting inclusions, SIAM J. Appl. Math., Volume 61 (2001), pp. 1706-1730
[22] Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1912-1919
Cited by Sources:
Comments - Policy