Comptes Rendus
Surface mechanics: facts and numerical models
Experimental and numerical analysis of fretting crack formation based on 3D X-FEM frictional contact fatigue crack model
Comptes Rendus. Mécanique, Volume 339 (2011) no. 7-8, pp. 532-551.

Nowadays, numerical simulation of 3D fatigue crack growth is easily handled using the eXtended Finite Element Method coupled with level set techniques. The finite element mesh does not need to conform to the crack geometry. Most difficulties associated to complex mesh generation around the crack and the re-meshing steps during the possible propagation are hence avoided. A 3D two-scale frictional contact fatigue crack model developed within the X-FEM framework is presented in this article. It allows the use of a refined discretization of the crack interface independent from the underlying finite element mesh and adapted to the frictional contact crack scale. A stabilized three-field weak formulation is also proposed to avoid possible oscillations in the local solution linked to the LBB condition when tangential slip is occurring. Two basic three-dimensional numerical examples are presented. They aim at illustrating the capacities and the high level of accuracy of the proposed X-FEM model. Stress intensity factors are computed along the crack front. Finally an experimental 3D ball/plate fretting fatigue test with running conditions inducing crack nucleation and propagation is modeled. 3D crack shapes defined from actual experimental ones and fretting loading cycle are considered. This latter numerical simulation demonstrates the model ability to deal with challenging actual complex problems and the possibility to achieve tribological fatigue prediction at a design stage based on the fatigue crack modeling.

De nos jours, la méthode des éléments finis étendus couplée aux techniques de fonctions de niveau (level-set) a été appliquée avec succès à un grand nombre dʼapplications et en particulier à la simulation de la propagation de fissures de fatigue tridimensionnelles. En effet, la géométrie de la fissure ne doit pas être maillée explicitement. La plupart des difficultés liées à la génération de maillages complexes autour de la fissure et les opérations de re-maillage et de projection de champs lors de la propagation sont donc évitées. Un modèle 3D à deux échelles, celle de la structure et celle de de la fissure, développé dans le cadre X-FEM est présenté dans ce papier. Il permet lʼutilisation dʼune discrétisation raffinée de lʼinterface de la fissure, adaptée à lʼéchelle des non linéarités de contact avec frottement et indépendante du maillage éléments finis sous-jacent. Une formulation faible stabilisée à trois champs est également proposée afin dʼéviter les oscillations possibles dans la solution locale liées à la condition LBB en cas de glissement tangentiel. Deux exemples numériques simples en trois dimensions sont présentés. Ils visent à illustrer les capacités et le niveau élevé de précision du modèle X-FEM proposé. Enfin, le modèle est intégré dans une démarche globale couplant expérimenation et simulation numérique pour prédire la durée de vie de composants en fatigue. Des essais de fretting menés pour des conditions de chargement induisant lʼinitiation et la propagation de fissures sont simulés numériquement. Les conditions de chargement et les faciès de fissuration 3D sont utilisés comme données dʼentrée dans le modèle numérique X-FEM. Les conditions de contact et frottement à lʼinterafce des fissures sont déterminées au cours dʼun cycle de fretting et les facteurs dʼintensité de contraintes en mode I, II et III sont calculés. Cette simulation démontre la capacité de modèle à faire face aux défis posés par les problèmes réels complexes et la possibilité de réaliser une prédiction en fatigue tribologique des composants de structures.

Published online:
DOI: 10.1016/j.crme.2011.05.011
Keywords: X-FEM, Fatigue, Fretting, Frictional contact
Mot clés : X-FEM, Fatigue, Fretting, Contact frottement

Emilien Pierres 1; Marie-Christine Baietto 1; Anthony Gravouil 1

1 INSA-Lyon, LaMCoS, CNRS UMR5259, bâtiment Jean-dʼAlembert, 18, 20, rue des Sciences, 69621 Villeurbanne cedex, France
@article{CRMECA_2011__339_7-8_532_0,
     author = {Emilien Pierres and Marie-Christine Baietto and Anthony Gravouil},
     title = {Experimental and numerical analysis of fretting crack formation based on {3D} {X-FEM} frictional contact fatigue crack model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {532--551},
     publisher = {Elsevier},
     volume = {339},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crme.2011.05.011},
     language = {en},
}
TY  - JOUR
AU  - Emilien Pierres
AU  - Marie-Christine Baietto
AU  - Anthony Gravouil
TI  - Experimental and numerical analysis of fretting crack formation based on 3D X-FEM frictional contact fatigue crack model
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 532
EP  - 551
VL  - 339
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2011.05.011
LA  - en
ID  - CRMECA_2011__339_7-8_532_0
ER  - 
%0 Journal Article
%A Emilien Pierres
%A Marie-Christine Baietto
%A Anthony Gravouil
%T Experimental and numerical analysis of fretting crack formation based on 3D X-FEM frictional contact fatigue crack model
%J Comptes Rendus. Mécanique
%D 2011
%P 532-551
%V 339
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2011.05.011
%G en
%F CRMECA_2011__339_7-8_532_0
Emilien Pierres; Marie-Christine Baietto; Anthony Gravouil. Experimental and numerical analysis of fretting crack formation based on 3D X-FEM frictional contact fatigue crack model. Comptes Rendus. Mécanique, Volume 339 (2011) no. 7-8, pp. 532-551. doi : 10.1016/j.crme.2011.05.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.011/

[1] C. Ruiz; P.H.B. Boddington; K.C. Chen An investigation of fatigue and fretting in a dovetail joint, Exp. Mech., Volume 24 (1984) no. 3, pp. 208-217

[2] K. Dang Van, Macro–micro approach in high cycle multiaxial fatigue, in: D.L. Mc Dowell, R. Ellis (Eds.), Advances in Multiaxial Fatigue, in: ASTM STP, vol. 1191, 1993.

[3] V. Lamacq; M.-C. Dubourg Modelling of initial fatigue crack growth and crack branching under fretting conditions, Fatigue Fract. Eng. Mat. Struct., Volume 22 (1999) no. 6, pp. 535-542

[4] M. Comninou The interface crack, ASME J. Appl. Mech., Volume 44 (1977), pp. 631-636

[5] D.A. Hills; M. Comninou An analysis of fretting fatigue cracks during loading phase, Int. J. Solids Struct., Volume 21 (1985) no. 4, pp. 399-410

[6] M.C. Dubourg; B. Villechaise Unilateral contact analysis of a crack with friction, European J. Mech. A/Solids, Volume 8 (1989) no. 4, pp. 309-319

[7] M.C. Dubourg; B. Villechaise Analysis of multiple fatigue cracks. Part I: theory, ASME J. Tribol., Volume 114 (1992), pp. 455-461

[8] J. Melenk; I. Babuška The partition of unity finite element method: Basic theory and applications, Comput. Meth. Appl. Mech. Eng., Volume 39 (1996), pp. 289-314

[9] N. Moës; J. Dolbow; T. Belytschko A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999), pp. 131-150

[10] N. Sukumar; N. Moës; B. Moran; T. Belytschko Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng., Volume 48 (2000) no. 11, pp. 1549-1570

[11] N. Sukumar; D.L. Chopp; E. Béchet; N. Moës Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method, Int. J. Numer. Methods Eng., Volume 76 (2008) no. 5, pp. 727-748

[12] N. Moës; A. Gravouil; T. Belytschko Non-planar 3D crack growth with the extended finite element and level sets – Part 1: Mechanical model, Int. J. Numer. Methods Eng., Volume 53 (2002) no. 11, pp. 2549-2568

[13] A. Gravouil; N. Moës; T. Belytschko Non-planar 3D crack growth with the extended finite element and level sets – Part 2: Level set update, Int. J. Numer. Methods Eng., Volume 53 (2002) no. 11, pp. 2569-2586

[14] J. Rannou; A. Gravouil; M.C. Baietto Dubourg A local multigrid X-FEM strategy for 3-D crack propagation, Int. J. Numer. Methods Eng., Volume 77 (2008), pp. 1641-1669

[15] J. Dolbow; N. Moës; T. Belytschko An extended finite element method for modelling crack growth with frictional contact, Comput. Meth. Appl. Mech. Eng., Volume 53 (2001), pp. 6825-6846

[16] T. Elguedj; A. Gravouil; A. Combescure A mixed augmented Lagrangian-extended finite element method for modelling elastic–plastic fatigue crack growth with unilateral contact, Int. J. Numer. Methods Eng., Volume 71 (2007), pp. 1569-1597

[17] E. Vitali; D.J. Benson Contact with friction in multi-material arbitrary Lagrangian–Eulerian formulations using X-FEM, Int. J. Numer. Methods Eng., Volume 76 (2008) no. 6, pp. 893-921

[18] F. Liu; R.I. Borja A contact algorithm for frictional crack propagation with the extended finite element method, Int. J. Numer. Methods Eng., Volume 76 (2008) no. 10, pp. 1489-1512

[19] E. Béchet; N. Moës; B. Wohlmuth A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method, Int. J. Numer. Methods Eng., Volume 78 (2009), pp. 931-954

[20] S. Géniaut; P. Massin; N. Moës A stable 3D contact formulation for cracks using X-FEM, European J. Comput. Mech., Volume 16 (2007) no. 1, pp. 259-276

[21] M. Siavelis; P. Massin; M.L. E Guiton; S. Mazet; N. Moës Robust implementation of contact under friction and large sliding with the eXtended Finite Element Method, Eur. J. Comput. Mech. (2010)

[22] E. Pierres; M.C. Baietto; A. Gravouil A two-scale eXtended finite element method for modeling 3D crack growth with interfacial contact, Int. J. Numer. Methods Eng., Volume 199 (2010) no. 17–20, pp. 1165-1177

[23] R. Ribeaucourt; M.C. Baietto Dubourg; A. Gravouil A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method, Comput. Meth. Appl. Mech. Eng., Volume 196 (2007), pp. 3230-3247

[24] E. Giner; N. Sukumar; F.D. Denia; F.J. Fuenmayor Extended finite element method for fretting fatigue crack propagation, Int. J. Solids Struct., Volume 45 (2008) no. 22–23, pp. 5675-5687

[25] E. Giner; M. Tur; A. Vercher; F.J. Fuenmayor Numerical modelling of crack-contact interaction in 2D incomplete fretting contacts using X-FEM, Tribology International, Volume 42 (2009), pp. 1269-1275

[26] E. Giner; M. Tur; J.E. Tarancón; F.J. Fuenmayor Crack face contact in X-FEM using a segment-to-segment approach, Int. J. Numer. Methods Eng. (2009) (online)

[27] M.C. Baietto; E. Pierres; A. Gravouil A multi-model X-FEM strategy dedicated to frictional crack growth under cyclic fretting fatigue loadings, Int. J. Solids Struct., Volume 47 (2010) no. 10, pp. 1405-1423

[28] D. Dureisseix; H. Bavestello Information transfer between incompatible finite element meshes: Application to coupled thermo-viscoelasticity, Comput. Meth. Appl. Mech. Eng., Volume 195 (2006), pp. 6523-6541

[29] P. Ladevèze Nonlinear Computational Structural Mechanics, Springer, New York, 1998

[30] L. Champaney Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions, Comput. Struct., Volume 73 (1999), pp. 249-266

[31] N. Moës; B. Béchet; M. Tourbier Imposing Dirichlet boundary conditions in the extended finite element method, Int. J. Numer. Methods Eng., Volume 67 (2006), pp. 1641-1669

[32] A. Hansbo; P. Hansbo A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Meth. Appl. Mech. Eng., Volume 193 (2004), pp. 3523-3540

[33] R. Becker; E. Burman; P. Hansbo A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, Comput. Meth. Appl. Mech. Eng., Volume 198 (2009), pp. 3352-3360

[34] I. Nistor; M.L.E. Guiton; P. Massin; N. Moës; S. Géniaut An X-FEM approach for large sliding contact along discontinuities, Int. J. Numer. Methods Eng., Volume 78 (2008) no. 12, pp. 1407-1435

[35] M. Duflot A study of the representation of cracks with level sets, Int. J. Numer. Methods Eng., Volume 70 (2006) no. 11, pp. 1261-1302

[36] M. Gosz; J. Dolbow; B. Moran Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks, Int. J. Solids Struct., Volume 35 (1998), pp. 1763-1783

[37] M. Gosz; B. Moran An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions, Eng. Fract. Mech., Volume 69 (2002) no. 3, pp. 299-319

[38] H. Rajaram; S. Socrate; D.M. Parks Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors, Eng. Fract. Mech., Volume 66 (2000) no. 5, pp. 455-482

[39] T. Nakamura; D.M. Parks Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral, Int. J. Solids Struct., Volume 29 (1992) no. 13, pp. 1597-1611

[40] B.N. Rao; S. Rahman An enriched meshless method for non-linear fracture mechanics, Int. J. Numer. Methods Eng., Volume 59 (2004), pp. 197-223

[41] J. Johnson; J. Qu An interaction integral method for computing mixed mode stress intensity factors for curved bimaterial interface cracks in non-uniform temperature fields, Eng. Fract. Mech., Volume 74 (2007), pp. 2282-2291

[42] A. Dorogoy; L. Banks-Sills Shear loaded interface crack under the influence of friction: a finite difference solution, Int. J. Numer. Methods Eng., Volume 59 (2004) no. 13, pp. 1749-1780

[43] B. Moran; C.F. Shih Crack tip and associated domain integrals from momentum and energy balance, Eng. Fract. Mech., Volume 27 (1987) no. 6, pp. 615-642

[44] P.A. Guidault; O. Allix; L. Champaney; C. Cornuault A multiscale extended finite element method for crack propagation, Comput. Meth. Appl. Mech. Eng., Volume 197 (2008), pp. 381-399

[45] P. Laborde; Y. Renard Fixed point strategies for elastostatic frictional contact problems, Math. Methods Appl. Sci., Volume 31 (2008) no. 4, pp. 415-441

[46] P. Blanchard; C. Colombier; V. Pellerin; S. Fayeulle; L. Vincent Material effect in fretting wear: iron, titanium and aluminium alloys, Metallurgical Transaction, Volume 22 (1991), pp. 1535-1544

[47] L. Vincent; Y. Berthier; M. Godet Testing methods in fretting fatigue: a critical appraisal, ASTM, Volume 1159 (1992), pp. 317-330

[48] S. Fouvry; Ph. Kapsa; L. Vincent Analysis of sliding behaviour for fretting loadings; determination of transition criteria, Wear, Volume 185 (1995), pp. 35-46

[49] R.D. Mindlin; H. Deresiewicz Elastic spheres in contact under varying oblique forces, ASME J. Appl. Mech. E, Volume 20 (1953), pp. 327-344

[50] X. Robin Crack Initiation Study Under Fretting Fatigue Conditions, Master Recherche, 2006 (42 p)

[51] K.L. Johnson Contact Mechanics, Cambridge University Press, Cambridge, 1985

[52] S. Fouvry; Ph. Kapsa; L. Vincent; K. Dang Van Theoretical analysis of fatigue cracking under dry friction for fretting loading conditions, Wear, Volume 195 (1996), pp. 21-34

Cited by Sources:

Comments - Policy