Comptes Rendus
Surface mechanics: facts and numerical models
Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass
Comptes Rendus. Mécanique, Surface mechanics : facts and numerical models, Volume 339 (2011) no. 7-8, pp. 518-531.

Very thin oxide coatings (<100 nm) which are used as anti-reflection and barrier layers in low emissivity architectural glass have been studied by nanoindentation methods to determine the effect of coating thickness on fracture toughness. Traditional microindentation-derived methods to determine the fracture toughness are unsuitable for assessing very thin coatings (<500 nm) and alternative energy-based models are required depending on what features are visible in indentation load–displacement curves. In cases where radial cracks are formed and grow in a discontinuous manner there are excursions in the load–displacement curve which can be the basis for analysis. In cases where picture frame cracks are observed there are no such features and an alternative approach based on assessment of irreversible work of indentation is required. This paper reviews the methods for obtaining fracture toughness data for very thin coatings and assesses the existence of size effects in the mechanical response of oxide coatings with different thickness on a glass substrate. For oxide coatings in the thickness range 100 to 400 nm no size effects in fracture toughness were observed.

Published online:
DOI: 10.1016/j.crme.2011.05.009
Keywords: Nanoindentation, Fracture, Toughness, Oxide coatings, Glass

Steve J. Bull 1

1 Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne, NE1 7RU, UK
@article{CRMECA_2011__339_7-8_518_0,
     author = {Steve J. Bull},
     title = {Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {518--531},
     publisher = {Elsevier},
     volume = {339},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crme.2011.05.009},
     language = {en},
}
TY  - JOUR
AU  - Steve J. Bull
TI  - Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 518
EP  - 531
VL  - 339
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2011.05.009
LA  - en
ID  - CRMECA_2011__339_7-8_518_0
ER  - 
%0 Journal Article
%A Steve J. Bull
%T Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass
%J Comptes Rendus. Mécanique
%D 2011
%P 518-531
%V 339
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2011.05.009
%G en
%F CRMECA_2011__339_7-8_518_0
Steve J. Bull. Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass. Comptes Rendus. Mécanique, Surface mechanics : facts and numerical models, Volume 339 (2011) no. 7-8, pp. 518-531. doi : 10.1016/j.crme.2011.05.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.009/

[1] B.R. Lawn; A.G. Evans J. Am. Ceram. Soc., 63 (1980), p. 574

[2] G.R. Anstis; P. Chantikul; B.R. Lawn; D.B. Marshall J. Am. Ceram. Soc., 64 (1981), p. 533

[3] J. Malzbender; G. de With; J.M.J. den Toonder Thin Solid Films, 366 (2000), p. 139

[4] R.F. Cook; G.M. Pharr J. Am. Ceram. Soc., 73 (1990), p. 787

[5] J. Jang; S. Wen; M.J. Lance; I.M. Anderson; G.M. Pharr Mater. Res. Soc. Symp. Proc., 795 (2004) (U8. 15.1)

[6] D.S. Harding; W.C. Oliver; G.M. Pharr Mater. Res. Soc. Symp. Proc., 356 (1995), p. 663

[7] G.M. Pharr Mater. Sci. Eng. A, 253 (1998), p. 151

[8] J. Chen; S.J. Bull J. Phys. D: Appl. Phys., 40 (2007), p. 5401

[9] X. Li; D. Diao; B. Bhushan Acta Mat., 45 (1997), p. 4453

[10] J. Chen; S.J. Bull Thin Solid Films, 494 (2006), p. 1

[11] G.M. Pharr; D.S. Harding; W.C. Oliver Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructure, Kluwer Academic Press, Dordrecht, 1993 (p. 449)

[12] T.W. Scharf; H. Deng; J.A. Barnard J. Vac. Sci. A, 15 (1997), p. 963

[13] D.B. Marshall; A.G. Evans Comm. Am. Ceram. Soc. (1982), p. C182

[14] J. Malzbender; G. de With J. Non-Cryst. Sol., 265 (2000), p. 51

[15] D.B. Marshall; B.R. Lawn J. Am. Ceram. Soc., 60 (1977), p. 86

[16] M.L. Emiliani J. Mater. Sci., 28 (1993), p. 5280

[17] P. Kodali; K.C. Walter; N. Nastasi Tribol. Int., 30 (1997), p. 591

[18] D. Broek Elementary Engineering Fracture Mechanics, Kluwer, Dordrecht, The Netherlands, 1997

[19] J. den Toonder; J. Malzbender; G. de With; R. Balkenende J. Mater. Res., 17 (2002), p. 224

[20] M.T. Laugier J. Mater. Sci. Lett., 6 (1987), p. 879

[21] K. Nihara; R. Morena; D.P.H. Hasselman J. Mater. Sci. Lett., 1 (1982), p. 13

[22] T. Scholz; G.A. Schneider; J. Muñoz-Saldaña; M.V. Swain Appl. Phys. Lett., 84 (2004), p. 3055

[23] K. Tanaka; Y. Kitahara; Y. Ichinose; T. Iimura Acta Metall, 32 (1984), p. 1719

[24] Y.G. Jung; A. Pajares; R. Banerjee; B.R. Lawn Acta Mater., 52 (2004), p. 3459

[25] J.S. Field; M.V. Swain; R.D. Dukino J. Mater. Res., 18 (2003), p. 1412

[26] J. Mencik Mechanics of Components with Treated or Coated Surface, Dordrecht, Kluwer, 1996

[27] D.B. Marshall; B.R. Lawn J. Mater. Sci., 14 (1979), p. 2001

[28] T.F. Page; S.V. Hainsworth Surf. Coat. Technol., 61 (1993), p. 201

[29] T. Fett, Computation of the crack opening displacements for Vickers indentation cracks, Report. No. FZKA 6757, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 2002.

[30] J.J. Kruzic; R.O. Ritchie J. Am. Ceram. Soc., 86 (2003), p. 1433

[31] R. Briard; C. Heitz; E. Barthel J. Non-Cryst. Sol., 351 (2005), p. 323

[32] S.J. Bull Z. Metall., 94 (2003), p. 787

[33] S.J. Bull; T.F. Page; E.H. Yoffe Phil. Mag. Lett., 59 (1989), p. 281

[34] B.R. Lawn Fracture of Brittle Solids, Cambridge University Press, Cambridge, 1993

[35] Z. Burghard; A. Zimmermann; J. Rödel; F. Aldinger; B.R. Lawn Acta Mater., 52 (2004), p. 293

[36] P. Chantikul; G.R. Anstis; B.R. Lawn; D.B. Marshall J. Am. Ceram. Soc., 64 (1981), p. 539

[37] D.B. Marshall; B.R. Lawn; A.G. Evans J. Am. Ceram. Soc., 65 (1982), p. 561

[38] M.T. Laugier J. Mater. Sci. Lett., 6 (1987), p. 768

[39] R.D. Dukino; M.V. Swain J. Am. Ceram. Soc., 75 (1992), p. 3299

[40] X. Li; B. Bhushan Thin Solid Films, 315 (1998), p. 214

[41] J. Malzbender; G. de With Surf. Coat. Technol., 135 (2000), p. 60

[42] J. Chen; S.J. Bull Mat. Res. Soc. Symp. Proc., 890 (2006), p. 57

[43] R.N. Stevens; F. Guiu Proc. Roy. Soc. Lond. A, 435 (1991), p. 169

[44] J.E. Field; C.S.J. Pickles Diamond and Related Materials, 5 (1996), p. 625

[45] M.S. Hu; M.D. Thouless; A.G. Evans Acta Mater., 36 (1988), p. 1301

[46] A.A. Volinsky; J.B. Vella; W.W. Gerberich Thin Solid Films, 429 (2003), p. 201

[47] Y.-T. Cheng; Z. Li; C.-M. Cheng Phil. Mag. A, 82 (2002), p. 1821

[48] W.C. Oliver; G.M. Pharr J. Mater. Res., 7 (1992), p. 1564

[49] ISO14577 part 4 (2007).

[50] W.W. Gerberich; W.M. Mook; C.B. Carter; R. Ballinari Int. J. Fracture, 148 (2007), p. 109

[51] Y. Katz; R. Keller; H. Huang; W.W. Gerberich Metall. Trans. A, 24 (1993), p. 343

[52] J.A. Sue ASM Handbook, vol. 5: Surface Engineering, ASM International, Metals Park, Ohio, 1994, pp. 647-653

[53] J. Chen; S.J. Bull J. Mater. Res., 21 (2006), p. 2617

[54] J. Chen; S.J. Bull Thin Solid Films, 517 (2009), p. 3704

Cited by Sources:

Comments - Policy