Very thin oxide coatings (<100 nm) which are used as anti-reflection and barrier layers in low emissivity architectural glass have been studied by nanoindentation methods to determine the effect of coating thickness on fracture toughness. Traditional microindentation-derived methods to determine the fracture toughness are unsuitable for assessing very thin coatings (<500 nm) and alternative energy-based models are required depending on what features are visible in indentation load–displacement curves. In cases where radial cracks are formed and grow in a discontinuous manner there are excursions in the load–displacement curve which can be the basis for analysis. In cases where picture frame cracks are observed there are no such features and an alternative approach based on assessment of irreversible work of indentation is required. This paper reviews the methods for obtaining fracture toughness data for very thin coatings and assesses the existence of size effects in the mechanical response of oxide coatings with different thickness on a glass substrate. For oxide coatings in the thickness range 100 to 400 nm no size effects in fracture toughness were observed.
Steve J. Bull 1
@article{CRMECA_2011__339_7-8_518_0, author = {Steve J. Bull}, title = {Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass}, journal = {Comptes Rendus. M\'ecanique}, pages = {518--531}, publisher = {Elsevier}, volume = {339}, number = {7-8}, year = {2011}, doi = {10.1016/j.crme.2011.05.009}, language = {en}, }
TY - JOUR AU - Steve J. Bull TI - Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass JO - Comptes Rendus. Mécanique PY - 2011 SP - 518 EP - 531 VL - 339 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2011.05.009 LA - en ID - CRMECA_2011__339_7-8_518_0 ER -
Steve J. Bull. Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass. Comptes Rendus. Mécanique, Surface mechanics : facts and numerical models, Volume 339 (2011) no. 7-8, pp. 518-531. doi : 10.1016/j.crme.2011.05.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.009/
[1] J. Am. Ceram. Soc., 63 (1980), p. 574
[2] J. Am. Ceram. Soc., 64 (1981), p. 533
[3] Thin Solid Films, 366 (2000), p. 139
[4] J. Am. Ceram. Soc., 73 (1990), p. 787
[5] Mater. Res. Soc. Symp. Proc., 795 (2004) (U8. 15.1)
[6] Mater. Res. Soc. Symp. Proc., 356 (1995), p. 663
[7] Mater. Sci. Eng. A, 253 (1998), p. 151
[8] J. Phys. D: Appl. Phys., 40 (2007), p. 5401
[9] Acta Mat., 45 (1997), p. 4453
[10] Thin Solid Films, 494 (2006), p. 1
[11] Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructure, Kluwer Academic Press, Dordrecht, 1993 (p. 449)
[12] J. Vac. Sci. A, 15 (1997), p. 963
[13] Comm. Am. Ceram. Soc. (1982), p. C182
[14] J. Non-Cryst. Sol., 265 (2000), p. 51
[15] J. Am. Ceram. Soc., 60 (1977), p. 86
[16] J. Mater. Sci., 28 (1993), p. 5280
[17] Tribol. Int., 30 (1997), p. 591
[18] Elementary Engineering Fracture Mechanics, Kluwer, Dordrecht, The Netherlands, 1997
[19] J. Mater. Res., 17 (2002), p. 224
[20] J. Mater. Sci. Lett., 6 (1987), p. 879
[21] J. Mater. Sci. Lett., 1 (1982), p. 13
[22] Appl. Phys. Lett., 84 (2004), p. 3055
[23] Acta Metall, 32 (1984), p. 1719
[24] Acta Mater., 52 (2004), p. 3459
[25] J. Mater. Res., 18 (2003), p. 1412
[26] Mechanics of Components with Treated or Coated Surface, Dordrecht, Kluwer, 1996
[27] J. Mater. Sci., 14 (1979), p. 2001
[28] Surf. Coat. Technol., 61 (1993), p. 201
[29] T. Fett, Computation of the crack opening displacements for Vickers indentation cracks, Report. No. FZKA 6757, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 2002.
[30] J. Am. Ceram. Soc., 86 (2003), p. 1433
[31] J. Non-Cryst. Sol., 351 (2005), p. 323
[32] Z. Metall., 94 (2003), p. 787
[33] Phil. Mag. Lett., 59 (1989), p. 281
[34] Fracture of Brittle Solids, Cambridge University Press, Cambridge, 1993
[35] Acta Mater., 52 (2004), p. 293
[36] J. Am. Ceram. Soc., 64 (1981), p. 539
[37] J. Am. Ceram. Soc., 65 (1982), p. 561
[38] J. Mater. Sci. Lett., 6 (1987), p. 768
[39] J. Am. Ceram. Soc., 75 (1992), p. 3299
[40] Thin Solid Films, 315 (1998), p. 214
[41] Surf. Coat. Technol., 135 (2000), p. 60
[42] Mat. Res. Soc. Symp. Proc., 890 (2006), p. 57
[43] Proc. Roy. Soc. Lond. A, 435 (1991), p. 169
[44] Diamond and Related Materials, 5 (1996), p. 625
[45] Acta Mater., 36 (1988), p. 1301
[46] Thin Solid Films, 429 (2003), p. 201
[47] Phil. Mag. A, 82 (2002), p. 1821
[48] J. Mater. Res., 7 (1992), p. 1564
[49] ISO14577 part 4 (2007).
[50] Int. J. Fracture, 148 (2007), p. 109
[51] Metall. Trans. A, 24 (1993), p. 343
[52] ASM Handbook, vol. 5: Surface Engineering, ASM International, Metals Park, Ohio, 1994, pp. 647-653
[53] J. Mater. Res., 21 (2006), p. 2617
[54] Thin Solid Films, 517 (2009), p. 3704
Cited by Sources:
Comments - Policy