Very thin oxide coatings (<100 nm) which are used as anti-reflection and barrier layers in low emissivity architectural glass have been studied by nanoindentation methods to determine the effect of coating thickness on fracture toughness. Traditional microindentation-derived methods to determine the fracture toughness are unsuitable for assessing very thin coatings (<500 nm) and alternative energy-based models are required depending on what features are visible in indentation load–displacement curves. In cases where radial cracks are formed and grow in a discontinuous manner there are excursions in the load–displacement curve which can be the basis for analysis. In cases where picture frame cracks are observed there are no such features and an alternative approach based on assessment of irreversible work of indentation is required. This paper reviews the methods for obtaining fracture toughness data for very thin coatings and assesses the existence of size effects in the mechanical response of oxide coatings with different thickness on a glass substrate. For oxide coatings in the thickness range 100 to 400 nm no size effects in fracture toughness were observed.
Steve J. Bull 1
@article{CRMECA_2011__339_7-8_518_0, author = {Steve J. Bull}, title = {Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass}, journal = {Comptes Rendus. M\'ecanique}, pages = {518--531}, publisher = {Elsevier}, volume = {339}, number = {7-8}, year = {2011}, doi = {10.1016/j.crme.2011.05.009}, language = {en}, }
TY - JOUR AU - Steve J. Bull TI - Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass JO - Comptes Rendus. Mécanique PY - 2011 SP - 518 EP - 531 VL - 339 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2011.05.009 LA - en ID - CRMECA_2011__339_7-8_518_0 ER -
Steve J. Bull. Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass. Comptes Rendus. Mécanique, Surface mechanics : facts and numerical models, Volume 339 (2011) no. 7-8, pp. 518-531. doi : 10.1016/j.crme.2011.05.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.009/
[1] J. Am. Ceram. Soc., 63 (1980), p. 574
[2] J. Am. Ceram. Soc., 64 (1981), p. 533
[3] Thin Solid Films, 366 (2000), p. 139
[4] J. Am. Ceram. Soc., 73 (1990), p. 787
[5] Mater. Res. Soc. Symp. Proc., 795 (2004) (U8. 15.1)
[6] Mater. Res. Soc. Symp. Proc., 356 (1995), p. 663
[7] Mater. Sci. Eng. A, 253 (1998), p. 151
[8] J. Phys. D: Appl. Phys., 40 (2007), p. 5401
[9] Acta Mat., 45 (1997), p. 4453
[10] Thin Solid Films, 494 (2006), p. 1
[11] Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructure, Kluwer Academic Press, Dordrecht, 1993 (p. 449)
[12] J. Vac. Sci. A, 15 (1997), p. 963
[13] Comm. Am. Ceram. Soc. (1982), p. C182
[14] J. Non-Cryst. Sol., 265 (2000), p. 51
[15] J. Am. Ceram. Soc., 60 (1977), p. 86
[16] J. Mater. Sci., 28 (1993), p. 5280
[17] Tribol. Int., 30 (1997), p. 591
[18] Elementary Engineering Fracture Mechanics, Kluwer, Dordrecht, The Netherlands, 1997
[19] J. Mater. Res., 17 (2002), p. 224
[20] J. Mater. Sci. Lett., 6 (1987), p. 879
[21] J. Mater. Sci. Lett., 1 (1982), p. 13
[22] Appl. Phys. Lett., 84 (2004), p. 3055
[23] Acta Metall, 32 (1984), p. 1719
[24] Acta Mater., 52 (2004), p. 3459
[25] J. Mater. Res., 18 (2003), p. 1412
[26] Mechanics of Components with Treated or Coated Surface, Dordrecht, Kluwer, 1996
[27] J. Mater. Sci., 14 (1979), p. 2001
[28] Surf. Coat. Technol., 61 (1993), p. 201
[29] T. Fett, Computation of the crack opening displacements for Vickers indentation cracks, Report. No. FZKA 6757, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 2002.
[30] J. Am. Ceram. Soc., 86 (2003), p. 1433
[31] J. Non-Cryst. Sol., 351 (2005), p. 323
[32] Z. Metall., 94 (2003), p. 787
[33] Phil. Mag. Lett., 59 (1989), p. 281
[34] Fracture of Brittle Solids, Cambridge University Press, Cambridge, 1993
[35] Acta Mater., 52 (2004), p. 293
[36] J. Am. Ceram. Soc., 64 (1981), p. 539
[37] J. Am. Ceram. Soc., 65 (1982), p. 561
[38] J. Mater. Sci. Lett., 6 (1987), p. 768
[39] J. Am. Ceram. Soc., 75 (1992), p. 3299
[40] Thin Solid Films, 315 (1998), p. 214
[41] Surf. Coat. Technol., 135 (2000), p. 60
[42] Mat. Res. Soc. Symp. Proc., 890 (2006), p. 57
[43] Proc. Roy. Soc. Lond. A, 435 (1991), p. 169
[44] Diamond and Related Materials, 5 (1996), p. 625
[45] Acta Mater., 36 (1988), p. 1301
[46] Thin Solid Films, 429 (2003), p. 201
[47] Phil. Mag. A, 82 (2002), p. 1821
[48] J. Mater. Res., 7 (1992), p. 1564
[49] ISO14577 part 4 (2007).
[50] Int. J. Fracture, 148 (2007), p. 109
[51] Metall. Trans. A, 24 (1993), p. 343
[52] ASM Handbook, vol. 5: Surface Engineering, ASM International, Metals Park, Ohio, 1994, pp. 647-653
[53] J. Mater. Res., 21 (2006), p. 2617
[54] Thin Solid Films, 517 (2009), p. 3704
- Stress distribution variations during nanoindentation failure of hard coatings on silicon substrates, Nanotechnology and Precision Engineering, Volume 6 (2023) no. 4 | DOI:10.1063/10.0022175
- Characterizing mechanical heterogeneity of coal at nano-to-micro scale using combined nanoindentation and FESEM-EDS, International Journal of Coal Geology, Volume 261 (2022), p. 104081 | DOI:10.1016/j.coal.2022.104081
- Microstructure, Mechanical, and Tribological Properties of Cr-Ti-Si-N Coatings, Journal of Materials Engineering and Performance, Volume 31 (2022) no. 12, p. 10108 | DOI:10.1007/s11665-022-07056-0
- The effects of simultaneous laser nitriding and texturing on surface hardness and tribological properties of Ti6Al4V, Surface and Coatings Technology, Volume 437 (2022), p. 128358 | DOI:10.1016/j.surfcoat.2022.128358
- Nanoindentation based fracture studies of ITO coating, Ceramics International, Volume 47 (2021) no. 10, p. 14717 | DOI:10.1016/j.ceramint.2021.01.005
- Improved wear imbalance with multilayered nanocomposite nanocrystalline Cu and tetrahedral amorphous carbon coating, Ceramics International, Volume 47 (2021) no. 18, p. 25664 | DOI:10.1016/j.ceramint.2021.05.292
- Mechanical performance of ITO/Ag/ITO multilayer films deposited on glass substrate by RF and DC magnetron sputtering, Ceramics International, Volume 47 (2021) no. 22, p. 31442 | DOI:10.1016/j.ceramint.2021.08.020
- Mechanical properties of thermally sprayed porous alumina coating by Vickers and Knoop indentation, Ceramics International, Volume 46 (2020) no. 12, p. 19843 | DOI:10.1016/j.ceramint.2020.05.039
- Micro indentation fracture of cement paste assessed by energy-based method: The method improvement and affecting factors, Construction and Building Materials, Volume 231 (2020), p. 117136 | DOI:10.1016/j.conbuildmat.2019.117136
- The influence of Ni concentration on the structure, mechanical and tribological properties of Ni–CrSiN coatings in seawater, Journal of Alloys and Compounds, Volume 819 (2020), p. 152998 | DOI:10.1016/j.jallcom.2019.152998
- Dewetting of Polymer Films Controlled by Protein Adsorption, Langmuir, Volume 36 (2020) no. 40, p. 11817 | DOI:10.1021/acs.langmuir.0c01718
- Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings, Ceramics International, Volume 45 (2019) no. 17, p. 21108 | DOI:10.1016/j.ceramint.2019.07.087
- Indentation of thin elastic films glued to rigid substrate: Asymptotic solutions and effects of adhesion, Thin Solid Films, Volume 683 (2019), p. 135 | DOI:10.1016/j.tsf.2019.05.038
- Microstructure and indentation response of TiN coatings: The effect of measurement method, Thin Solid Films, Volume 688 (2019), p. 137452 | DOI:10.1016/j.tsf.2019.137452
- A New Formula for Evaluating Indentation Toughness in Ceramics, Experimental Mechanics, Volume 58 (2018) no. 1, p. 177 | DOI:10.1007/s11340-017-0325-8
- Thickness-dependent fracture behaviour of amorphous carbon films on a PEEK substrate under nanoindentation, Vacuum, Volume 144 (2017), p. 107 | DOI:10.1016/j.vacuum.2017.07.027
- Evaluation of elasto-plastic properties of ITO film using combined nanoindentation and finite element approach, Ceramics International, Volume 42 (2016) no. 1, p. 1225 | DOI:10.1016/j.ceramint.2015.09.054
- A Multilayer Strategy for Improving the Abrasion Resistance of Silica Nanoparticle-Based Motheye Antireflective Coatings on Glass, Journal of Micro and Nano-Manufacturing, Volume 4 (2016) no. 3 | DOI:10.1115/1.4033861
- Indentation stress-based models to predict fracture properties of brittle thin film on a ductile substrate, Surface and Coatings Technology, Volume 296 (2016), p. 46 | DOI:10.1016/j.surfcoat.2016.03.067
- Nanoindentation response of ITO film, Ceramics International, Volume 41 (2015) no. 6, p. 8223 | DOI:10.1016/j.ceramint.2015.02.090
- Introduction, High Strain Rate Behavior of Nanocomposites and Nanocoatings (2015), p. 1 | DOI:10.1007/978-3-319-14481-8_1
- Toughness measurement of thin films based on circumferential cracks induced at conical indentation, International Journal of Fracture, Volume 193 (2015) no. 2, p. 117 | DOI:10.1007/s10704-015-0022-5
- Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis, Journal of the Mechanical Behavior of Biomedical Materials, Volume 47 (2015), p. 1 | DOI:10.1016/j.jmbbm.2015.03.006
- Instrumented nanoindentation and scanning electron transmission microscopy applied to the study of the adhesion of InP membranes heteroepitaxially bonded to Si, The European Physical Journal Applied Physics, Volume 65 (2014) no. 2, p. 20702 | DOI:10.1051/epjap/2013130389
- Size effects in the mechanical response of nanoscale multilayer coatings on glass, Thin Solid Films, Volume 571 (2014), p. 290 | DOI:10.1016/j.tsf.2014.04.014
- Evaluation of the surface bonding energy of an InP membrane bonded oxide-free to Si using instrumented nanoindentation, Applied Physics Letters, Volume 103 (2013) no. 8, p. 081901 | DOI:10.1063/1.4817675
- Analysis on multiple ring-like cracks in thin amorphous carbon film on soft substrate under nanoindentation, Journal of Physics D: Applied Physics, Volume 46 (2013) no. 50, p. 505314 | DOI:10.1088/0022-3727/46/50/505314
- Détermination de la ténacité de matériaux fragiles ou ductiles à partir de l’essai d’indentation, Revue de Métallurgie, Volume 110 (2013) no. 3, p. 215 | DOI:10.1051/metal/2013065
- Nanoindentation Measurements of Mechanical Properties of Very Thin Films and Nanostructured Materials at High Spatial Resolution, Scanning Probe Microscopy in Industrial Applications (2013), p. 162 | DOI:10.1002/9781118723111.ch7
- Mechanical response of atomic layer deposition alumina coatings on stiff and compliant substrates, Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, Volume 30 (2012) no. 1 | DOI:10.1116/1.3670401
Cité par 30 documents. Sources : Crossref
Commentaires - Politique